
Reduced precision applicability 
and trade-offs for SLAM algorithms

Oscar Palomar, Andy Nisbet, John Mawer, Graham Riley, Mikel Lujan

Advanced Processor Technologies (APT)
University of Manchester, UK

oscar.palomar@manchester.ac.uk

3rd Workshop On Approximate Computing (WAPCO 2017)

25/01/2017, Stockholm



Reduced precision applicability and trade-offs for SLAM algorithms 2

SLAM

● SLAM: Simultaneous Localisation And 
Mapping
– Determine the pose (position, orientation) of a 

device with camera(s) and map the environment

– Stereo vs. monocular + depth camera (RGB-D)

– Dense vs. sparse

– KinnectFusion, ORBSlam2, ElasticFusion, 
LSDSlam,…

● SLAMBench from the PAMELA project
– http://apt.cs.manchester.ac.uk/projects/PAMELA/

tools/SLAMBench/index.html#download

– Clean, efficient implementation of KinnectFusion

– Multiple variants: C++, OpenMP, CUDA, OpenCL

– Report performance, power, accuracy (vs. known 
ground truth): Absolute Trajectory Error



Reduced precision applicability and trade-offs for SLAM algorithms 3

Approximate computing 
opportunities in SLAM

● Accuracy metric, known ground truth (when using the 
standard, synthetic ICL data sets)
– Straightforward to determine the impact of approximation

● Already include algorithmic parameters that affect 
accuracy

● Input is a (noisy) image stream
– Algorithms must be robust to errors there

● “Delta” between frames is typically small
– Some selected as keyframes. Compute these only with the 

highest accuracy?

– Beware of range if reducing precision though…

●



Reduced precision applicability and trade-offs for SLAM algorithms 4

Reduced precision

● Use 16-bit floating (half) in SLAMBench on ARM processors
– IEEE standard, ARM support (CUDA too)

● __fp16 type in gcc (limited, e.g. cannot be a function parameter or return type)
● ARM instructions for load/store only by now

● First attempt, use it everywhere
– Failed, the algorithm is unable to track

– Some variables need 32-bit

● Tried 16-bit as default and selectively use 32-bit where necessary
– Also failed

– Long, tedious debugging and tracing efforts useless

● Now my default is 32-bit and selectively use 16-bit
– It works :)

– Incrementally expand use of 16-bit

– Easier to debug (there is a correct baseline)



Reduced precision applicability and trade-offs for SLAM algorithms 5

FlexiblePoint Library

● flexpoint C++ class, floating point variables that can store data in 32-bit or 
16-bit format (and change between them)

● Methods to set the default width and per variable width
● Overload all operators to operate with flexpoint variables set to 16-bit, 32-

bit or a mix of both
● Implicit cast from/to int/long/char/float…

– Float for constants, or return values/parameters of library function calls

– Worked fined for the majority of the code, needed explicit casting in a few places

● Generate statistics, traces, track ranges, etc...
● Developed to be able to experiment with mixed precision easily and to 

facilitate changing the data width for design space exploration (DSE)
– Significant slowdowns



Reduced precision applicability and trade-offs for SLAM algorithms 6

Overview of results

configuration ATE Max Mean Total 

FP64 0.049 0.020 18.051

FP32 0.049 0.020 18.067

MIXED (72% FP16) 0.452 0.062 54.513



Reduced precision applicability and trade-offs for SLAM algorithms 7

Absolute Trajectory Error



Reduced precision applicability and trade-offs for SLAM algorithms 8

The integrate kernel

configuration ATE 
Max 

Mean Total Not 
tracked 

FP16 3.505 1.904 1675 708

VOL-FP32 3.101 1.397 1229 385

CAM-Z-FP32 0.712 0.346 304 41

CAM-FP32 0.057 0.026 23 0

CAM-VOL-FP32 0.056 0.026 23 0

FP32 0.049 0.020 18 0



Reduced precision applicability and trade-offs for SLAM algorithms 9

Conclusions and future work

● SLAMBench can benefit a lot from reduced precision
– But it is “fragile”

● Will need more DSE
– Automated for larger design space

● Width of multiple (each) variables, input data set, algorithmic 
parameters...

● Other SLAM algorithms

● Performance, power, energy evaluation
– Efficient implementation from selected points

– SLAMbench CUDA implementation of Kfusion

● Dynamic tuning, keyframes vs non-keyframes,…



Reduced precision applicability 
and trade-offs for SLAM algorithms

Oscar Palomar, Andy Nisbet, John Mawer, Graham Riley, Mikel Lujan

Advanced Processor Technologies (APT)
University of Manchester, UK

oscar.palomar@manchester.ac.uk

3rd Workshop On Approximate Computing (WAPCO 2017)

25/01/2017, Stockholm


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

