

Deep Learning Hardware Acceleration

Jorge Albericio⁺ Alberto Delmas Lascorz Patrick Judd Sayeh Sharify Tayler Hetherington*

Natalie Enright Jerger Tor Aamodt*

Andreas Moshovos

+ now at NVIDIA

Disclaimer

The University of Toronto have filed **patent applications** for the mentioned technologies.

Deep Learning: Where Time Goes?

Time: ~ 60% - 90% → inner products

Convolutional Neural Networks: e.g., Image Classification

Deep Learning: Where Time Goes?

Time: ~ 60% - 90% → inner products

SIMD: Exploit Computation Stucture

Our Approach

Longer Term Goal

Value Properties to Exploit?

Value Properties to Exploit

Value Properties to Exploit

Our Results: Performance

Our Results: Memory Footprint and Bandwidth

• Proteus:

44% less memory bandwidth + footprint

Cnvlutin: ISCA'16

Many ineffectual multiplications

Many Activations and Weights are Intrinsically Ineffectual (zero)

Many ineffectual multiplications

Many more ineffectual multiplications

On-the-fly ineffectual product elimination Performance + energy Optional: accuracy loss +performance

No Accuracy Loss +52% performance -7% power +5% area

Can relax the ineffectual criterion better performance: 60% even more w/ some accuracy loss

Deep Learning: Convolutional Neural Networks

Naïve Solution: No Wide Memory Accesses

16 independent narrow activation streams

Removing Zeroes: At the output of each layer

Cnvlutin: No Accuracy Loss

better

Loosening the Ineffectual Neuron Criterion

Are these robust? How to find the best?

Another Property of CNNs

Operand Precision Required Fixed? 16 bits?

CNNs: Precision Requirements Vary

Operand Precision Required Fixed Varies 5 bits to 13 bits

Stripes

Execution Time = 16 / P

Peformance + Energy Efficiency + Accuracy Knob ²⁹

Stripes: Key Concept

 Devil in the Details: Carefully chose what to serialize and what to reuse → same input wires as baseline

SIMD: Exploit Computation Stucture

Stripes Bit-Serial Engine

Compensating for Bit-Serial's Compute Bandwidth Loss

• Each Tile:

- 16 Windows Concurrently 16 neurons each
 - 16 Filters
 - 16 partial output neurons

Stripes

No Accuracy Loss +192% performance* -57% energy +32% area

More performance w/ accuracy loss

* W/O Older: LeNet + Covnet

Stripes: Performance Boost

Fully-Connected Layers?

• Each Tile:

- No Weight Reuse
- Cannot Have 16 Windows

Fully-Connected Layers

- No Weight Reuse
- Cannot Have 16 Windows

TARTAN: Accelerating Fully-Connected Layers

- Bit-Parallel Engine
 - V: activation
 - I: weight
 - Both 2 bits

Bit-Parallel Engine: Processing one Activation x Weight

- Cycle 1:
 - Activation: a1 and Weight: W

Bit-Parallel Engine: Processing Another Pair

- Cycle 2:
 - Activation: a2 and Weight: W

• a1 x W + a2 x W over two cycles

TARTAN engine

- 2 x 1b activation inputs
- 2b or 2 x 1b weight inputs

TARTAN: Convolutional Layer Processing

• Cycle 1: load 2b weight into BRs

TARTAN: Weight x 1st bit of Two Activations

• Cycle 2: Multiply W with bit 1 of activations a1 and a2

TARTAN: Weight x 2nd bit of Two Activations

- Cycle 3: multiply W with 2nd bit of a1 and a2
- Load new W' into BR

3-stage pipeline to do 2: 2b activation x 2b weight

TARTAN: Fully-Connected Layers: Loading Weights

- What is different? Weights cannot be reused
- Cycle 1: Load first bit of two weights into Ars

Bit 1 of Two Different Weights

TARTAN: Fully-Connected Layers: Loading Weights

Cycle 2: Load 2nd bit of w1 and w2 into ARs

- Bit 2 of Two Different Weights
- Loaded Different Weights to Each Unit

TARTAN: Fully-Connected Layers: Processing Activations

 Cycle 3: Move AR into BR and proceed as before over two cycles

- 5-stage pipeline to do:
 - TWO of (2b activation x 2b weight)

TARTAN: Result Summary

Bit-Serial TARTAN

- 2.04x faster than DaDiannao
- 1.25x more energy efficient at the same frequency
- 1.5x area overhead
- 2-bit at-a-time TARTAN
 - 1.6x faster over DaDiannao
 - Roughly same energy efficiency
 - 1.25x area overhead

Bit-Pragmatic Engine

Operand Information Content Varies

Inner-Products

- Want to A x B
- Let's look at A

• Which bits really matter?

Zero Bit Content: 16-bit fixed-point

Only 8% of bits are non-zero once precision is reduced

• 15%-10% otherwise

Zero Bit Content: 8-bit Quantized (Tensorflow-like)

Only 27% of bits are non-zero

Pragmatic Concept: Use Shift-and-Add

- Simply Modify Stripes?
- Too Large + Cross Lane Synchronization

Bit-Parallel Engine

Solution to #1? 2-Stage Shifting

- Process in groups of Max N Difference
- Example with N = 4

- Some opportunity loss, much lower area overhead
- Can skip groups of all zeroes

Solution to #1? 2-Stage Shifting

Process in groups of Max N Difference

Some opportunity loss, much lower area overhead

Lane Synchronization

- Different # of 1 bits
- Lanes go out of sync
- May have to fetch up to 256 different activations from NM
- Keep Lanes Synchronized:
- No cost: All lanes
- Extra register per column: some cost better performance

Bit-Pragmatic

No Accuracy Loss +310% performance - 48% Energy + 45% Area

Better w/ 8-bit Quantized Nets

Processing Only The Essential Information

Bit-Pragmatic

Better encoding is possible and improves performance

Proteus

Operand Precision Required Varies

Proteus: Store in reduced precision in memory

Less Bandwidth, Less Energy

Conventional Format: Base Precision

Data Physically aligns with Unit Inputs

Conventional Format: Base Precision

Need Shuffling Network to Route Synapses 4K input bits \rightarrow Any 4K output bit position

Proteus' Key Idea: Pack Along Data Lane Columns

Local Shufflers: 16b input 16b output Much simpler

44% less memory bandwidth

- Training
- Prototype
 - Design Space: lower-end confs
- Unified Architecture
 - Dispatcher + Compute
 - Other Workloads: Comp. Photo
- General Purpose Compute Class

Our Results: Performance

A Value-Based Approach to Acceleration

- More properties to discover and exploit
- E.g., Filters do overlap significantly

CNNs one class

- Other networks
- Use the same layers
- Relative importance different

Training