
Compression of Higher Derivative Tensors in
Stochastic Significance Analysis

Jens Deussen and Uwe Naumann
LuFG Informatik 12, RWTH Aachen University

Software and Tools for Computational Engineering
52074 Aachen, Germany

Email: [deussen,naumann]@stce.rwth-aachen.de

Abstract—In the SCoRPiO project significance based approx-
imate computing is used to reduce the energy consumption of
a program execution by tolerating less accurate results. Part of
the project is to define significance as an algorithmic property
to quantify the impact of a computation to the output. In
the last years we presented the interval-adjoint significance
analysis which combines interval information with derivative
information. Thus, the analysis can identify computations that
can be evaluated less accurate, e.g. on low power but less
reliable hardware. Unfortunately, by using interval arithmetic the
analysis sometimes results in a large overestimation of intervals
and hence large significance values.

For that reason, we propose an alternative approach to obtain
significance information by propagation of moment approxi-
mations of probability distributions. This method uses Taylor
series which require higher derivatives to approximate statistical
moments, e.g. the expectation and the variance. The computation
of these derivatives is expensive even for adjoint algorithmic
differentiation methods. Therefore, we exploit the symmetry and
the sparsity structure of the higher derivatives to considerably
improve the efficiency of the computation.

I. INTRODUCTION

In approximate computing computer programs are executed
at lower cost (e.g. energy) by relaxing reliability constraints
of the computation. A lot of applications accept approximate
results, e.g. in the field of multimedia, audio, image and video
processing respectively, or in data mining. The approach of
significance-driven approximate computing exploit the fact
that the computations of an applications have different impor-
tance for the quality of the result. Significant computations are
more important to the quality of the output while insignificant
computations just have a minor impact. In [1] statistical
analysis is used to classify computations as significant or non-
significant. Another approach was introduced in [2] in which
significance information is obtained by interval arithmetic and
error propagation based on local partial derivatives.

Significance-driven approximate computing is also re-
searched in the FET-open project SCoRPiO1. Automatic code
characterization techniques which use compile- and run-time
analyses are developed to identify the significant and in-
significant computations. By tolerating a controlled degree of
imprecision, insignificant computations can be steered to low
power yet less reliable hardware. Another option to exploit sig-

1http://www.scorpio-project.eu/outline/

nificance information is to save computing time by replacing
insignificant computations by representative expressions.

As a part of SCoRPiO we developed the deterministic
interval-adjoint significance analysis (IASA) to obtain signifi-
cance information of each computation of a computer program
for a user specified input domain automatically. IASA com-
bines the forward propagation of interval values and the back-
ward propagation of adjoints to define significance (see e.g.
[3]). Therefore, interval arithmetic (IA) [4] and algorithmic
differentiation (AD) [5], [6], [7] are applied. Binary interval
splitting [8], [9] is defined to address difficulties introduced by
the naive usage of interval arithmetic, e.g. unfeasible relational
operators or the wrapping effect [10].

IASA is implemented in dco/scorpio2. The software
transforms a given C or C++ source code to a directed
acyclic graph representing single assignment code. The user
has to provide input intervals that are propagated through the
graph, such that value intervals for each intermediate variable
are computed. After that, adjoint intervals are propagated
backwards to obtain derivatives of the output with respect
to all input and intermediate variables. By combining the
forward and the backward information significance values for
all variables can be computed.

These significance values can be used in the SCoRPiO
source-to-source compiler [11], [12] to set the significance of
tasks. The software is extended by a significance exploration
tool set [9] to support the analysis. This tool set enables the
automatic visualization of the computational graph annotated
with significance information to give the user a better under-
standing of the program. Furthermore, it is possible to generate
optimized source code based on the computed significance val-
ues and apply graph algorithms to detect further insignificant
computations.

In this paper we introduce an alternative approach for the
computation of significance information. Instead of propa-
gating intervals we propose to propagate probability den-
sity functions (PDFs). Therefore, we apply the moments
method (see e.g. [13], [14], [15], [16], [17]) that uses Taylor
series expansion to approximate the moments of the outputs,
mean and variance in particular. Thus, for given input PDFs
and derivative information the moments method computes

2https://gitlab.stce.rwth-aachen.de/SCORPIO/dco scorpio/

approximations of the moments of the output PDFs. Among
others, this method is used for robust optimization in [13] and
[17].

To improve the accuracy of the approximations of the
moments higher-order terms in the Taylor series need to be
involved that require higher derivatives. Again, AD can be
used to compute these higher derivatives (see e.g. [18]). Due
to the expenses that come along with these computations it is
indispensable to exploit the sparsity structure and symmetry of
the higher-order tensors. While [19] describes the sparsity of
the a third derivative tensor, in [20] graph coloring algorithms
are introduced that enhance the computation of first and second
derivatives, Jacobian and Hessian matrices respectively. To
our knowledge there is no publication considering coloring
techniques for third and higher derivatives.

The document is organized as follows: Section II gives
a new definition of significance. Furthermore, the moments
method and algorithmic differentiation are outlined. After
that, we focus on the computation of higher derivatives by
exploiting symmetry and sparsity. Subsequently, in section III
we illustrate the methods for the exploitation of symmetry
and sparsity for third order derivatives by applying them to a
minimal example.

II. METHODOLOGY

In this section we recall the basics of the significance
analysis from [9] and introduce a new analysis based on the
moments method and algorithmic differentiation. Moreover,
we give a new definition of significance based on uncertainty
information obtained by the moments method.

As in [9] we assume a computer program P implementing a
multivariate scalar function f : D → I with domain D ⊆ Rn,
image I ⊆ R and y = f(x) in which x = (x1, . . . , xn)

T .
The implementation of function f can be decomposed into
a sequence of p elemental functions (binary operations and
intrinsic functions) by the three-part evaluation procedure from
[6]. This transformation yields single assignment code in
which each intermediate variable vi stores the result of an
elemental function.

A significance analysis should assign significance values
Sy(vi) to all intermediate variables vi for a given input domain
D. In [9] we assumed that the input domain is given by
intervals D = [x] = [x,x] = {x ∈ Rn|x ≤ x ≤ x} with
lower bound x ∈ Rn and upper bound x ∈ Rn. From now
on we will assume that the input domain is composed of
random variables from PDFs that are described by their first
four moments, the mean µx, the variance σ2

x, the skewness
γx and the kurtosis κx in particular. Therefore, the analysis
needs to quantify the influence of the input domain D on each
intermediate variable vi and the influence of each intermediate
variable on the output y. The significance value should be a
combination of both information.

A. Definition of Significance

In [9] we proposed the significance definition of an inter-
mediate variable vi that combines forward information of IA

and backward information of AD for a given input range [x]

Sy(vi) = w[vi] ·max |∇[vi][y]| . (1)

In (1) w([vi]) = vi − vi denotes the width of the interval
value [vi] that measures the impact of the input x on an
intermediates variable vi. A large width w([vi]) indicates that
the intermediate vi is highly sensitive to the variation of all
inputs x in the range [x]. Furthermore, the absolute maximum
of the first order derivatives |∇[vi][y]| of output interval [y]
with respect to intermediate vi is a measurement for the
individual influence of intermediate variables to the output.
If the absolute value of this derivative |∇[vi][y]| is small, a
change in the value of vi has just a small impact on y.

We now introduce a new definition that uses the first
two moments to quantify the significance of an intermediate
variable vi:

Sy(vi) = σvi ·
∣∣∣∣ ∂µy

∂µvi

∣∣∣∣ . (2)

While the mean measures the central location of a PDF the
variance measure its variability or width (see [21]). The square
root of the variance is known as the standard deviation of the
PDF. The standard deviation σvi can be used as an interval
estimator of the mean which is proportional to its confidence
interval. We use σvi analog to the width of the value interval
in (1). Thus, a large value of σvi means that the confidence
interval of vi is wide for the given input PDFs. Again, as
a second factor we use a first derivative of the output y
with respect to the intermediate variable vi. Instead of using
interval derivatives, we are now interested in the change of
the mean of the output PDF by slightly changing the mean
of the intermediate variable. This second factor describes the
individual influence of µvi on µy .

In the next subsection we outline how to obtain moments
of the PDF of intermediate variables by using the moments
method.

B. Moments Method

The moments method can be used to estimates the PDFs of
all intermediate and output variables for given input PDFs. In
[14] the moments method is derived with no assumption on
the input PDF by an multivariate Taylor series expansion of
f(x) about the mean µx.

The first two moments are defined as

µy = E [f(x)] (3)

σ2
y = E

[
(f(x)− E [f(x)])

2
]
. (4)

By neglecting higher terms in the Taylor series of f(x) the
moments of the output in (3) and (4) can be approximated by

µy ≈ y{0} +
∑
i

(
y{ii} + γiy

{iii}
)
+O

(
σ4
x

)
, (5)

and

σ2
y ≈

∑
i

((
y{i}

)2
+ 2γiy

{i}y{ii}

+ (κi − 1)
(
y{ii}

)2
+ 2κiy

{i}y{iii}

+
∑
i6=j

(
2
(
y{ij}

)2
+ 6y{i}y{ijj}

))
+O

(
σ4
x

)
,

(6)

in which y{0} = f(µx) and the Taylor coefficients y{i}, y{ij}

and y{ijk} are defined as

y{i} =
∂f

∂xi
σxi

,

y{ij} =
1

2!

∂2f

∂xi∂xj
σxi

σxj
,

y{ijk} =
1

3!

∂3f

∂xi∂xj∂xk
σxi

σxj
σxk

.

For a more detailed derivation see [14] or [16].
In (5) and (6) it can be seen that a fourth-order approxima-

tion already requires derivatives up to third order. Increasing
the accuracy of the approximation can be done considering
higher-order terms but their computation require even higher
derivatives. In the following subsection, we discuss how to
efficiently compute higher derivatives by AD.

C. Algorithmic Differentiation

The first derivative of a multivariate scalar function
f : Rn → R is called gradient and looks like

∇f =

(
∂y

∂xi

)
i=0,...,n−1

∈ Rn .

The second derivative of f with respect to x is called Hessian
and has the form of a matrix

H = ∇2f =

(
∂2y

∂xi∂xj

)
i,j=0,...,n−1

∈ Rn×n ,

and the third derivative is a 3-tensor

T = ∇3f =

(
∂3y

∂xi∂xj∂xk

)
i,j,k=0,...,n−1

∈ Rn×n×n .

If the function f is local differentiable AD can compute
additionally to the function value its derivatives by using the
chain rule. There are two basic modes: the tangent (also:
forward) and the adjoint (also: reverse) mode. In the tangent
mode the partial derivatives of elemental functions are accu-
mulated from the inputs to the outputs. In contrast, the partial
derivatives are accumulated the other way around, from the
output to the inputs in the adjoint mode. In the following we
will use the notation of [7] where tangents are denoted with
superscripts and adjoints with subscripts.

An evaluation of the tangent model can be interpreted as
a product of the first derivative with a user-defined tangent
x(1). By setting the tangent equals to the standard basis of Rn

(also called seeding) the tangent model yields one element of

the gradient. The value of this element can be retrieved (also
called harvested) from y(1).

y(1) = f (1)(x,x(1)) =
〈
∇f(x),x(1)

〉
= ∇f(x) · x(1) (7)

Thus, to obtain the whole gradient of f the tangent model has
to be evaluated n times. On the other side, the adjoint model
can be interpreted as a product of the transposed of the first
derivative with a user-defined adjoint y(1).

x(1) = f(1)(x, y(1)) =
〈
y(1),∇f(x)

〉
= ∇f(x)> · y(1) (8)

By seeding the standard basis of R (note that there is only
one element), the adjoint model results in the whole gradient,
such that a single evaluation of the adjoint model is sufficient.

D. Computation of Higher Derivatives

To obtain of the Hessian we can compute the first derivative
of the first derivative. Due to the fact that we have two basic
modes there are four combinations to compute the Hessian.
The tangent-over-tangent model result from the application of
the tangent mode to the first-order tangent model in (7).

y(1,2) = f (1,2)(x,x(1),x(2))

=
〈
∇2f(x),x(1),x(2)

〉
= x(1)> · ∇2f(x) · x(2)

By seeding the standard basis of Rn for the tangents x(1)

and x(2) of the tangent-over-tangent model the Hessian can
be computed with n2 evaluations of f (1,2). The other three
models have the same computational complexity because they
apply the adjoint mode at least once. To obtain the whole
Hessian the second-order adjoint model need to be evaluated
n times. In this paper we will only consider the tangent-over-
adjoint model where the tangent mode is applied to (8).

x
(2)
(1) = f

(2)
(1) (x,x

(2), y(1))

=
〈
y(1),∇2f(x),x(2)

〉
= y>(1) · ∇

2f(x) · x(2)

(9)

Note that these models are simplified versions of the complete
second-order models by setting mixed terms to zero. A detailed
derivation can be found in [6] and [7].

To illustrate the procedure we suppose the matrix in (10) as
an example Hessian.

h0 h1 h2()H00 H01

H10 H11

H22

(10)

If we use (9) and seed y(1) = 1 and x(2) = (1, 0, 0)> we
obtain x

(2)
(1) = h0 = (H00, H10, 0)

>. To get the other two
columns of the Hessian, we additionally need to seed x(2) =
(0, 1, 0)> and x(2) = (0, 0, 1)>.

To receive even higher derivative models the two basic
modes can be applied recursively to f . As an example

h0 h1 h2

Fig. 1: Column intersection graph of the symmetric matrix
from (10) and possible distance-1 coloring

the third-order adjoint model via tangent-over-tangent-over-
adjoint can be written as

x
(2,3)
(1) = f

(2,3)
(1) (x,x(2),x(3), y(1))

=
〈
y(1),∇3f(x),x(2),x(3)

〉
.

(11)

To derive the 3-tensor of the third derivative n2 evaluations of
f
(2,3)
(1) are required. For large n this computation becomes very

expensive in terms of runtime. These derivatives are symmetric
and they are often sparse which means that they contain a
lot of zero elements. In the next two subsections we give an
overview how to exploit these facts.

E. Exploitation of Symmetry and Sparsity of Hessians

In [20] a comprehensive summary of coloring techniques
is given that can be used for the exploitation of sparsity of
Jacobian and Hessian matrices. The general idea is to identify
columns or rows of the corresponding matrix that can be com-
puted at the same time. The sparsity patterns of the matrices
are required for these algorithms. One possibility to obtain
these patterns is to propagate sets of indices. Nevertheless,
the detection of sparsity patterns is out of the scope of this
paper. Thus, we consider the sparsity pattern P of the higher
derivatives to be known.

A first approach is to find orthogonal columns in the matrix.
This problem can also be described as a graph coloring
problem. The sparsity structure of the matrix induces a column
intersection graph, where each column is represented as a
node. Two nodes are connected by an edge if they have an
element in the same row. After that, an distance-1 coloring
is applied to the graph in that the same color cannot be
assigned to adjacent nodes. The nodes and thus the columns
of the Hessian which have the same color can be computed
simultaneous.

As an example we can assume the sparsity structure from
(10) again. The corresponding column intersection graph for
the Hessian is given in Fig. 1. Note that the two adjacent nodes
have different colors due to the distance-1 coloring. It would
also be possible that h1 and h2 get the same color. By seeding
y(1) = 1 and x(2) = (1, 0, 1)> the tangent-over-adjoint model
from (9) results in x

(2)
(1) = h0+h2 = (H00, H10, H22)

>. Due to
the fact, that we know the sparsity structure of the Hessian we
can directly recover the corresponding columns of the matrix.

By considering the symmetry of the Hessian (Hij =
Hji ∀i, j) another coloring algorithm can be applied. Instead
of computing each element of the Hessian we compute the
symmetric elements at least once. The so called star coloring
uses an adjacency graph where each node belongs to a column
(or row). Each element Hij in the matrix is an edge connecting

h0 h1 h2

Fig. 2: Adjacency graph of the symmetric matrix from (12)
and possible star coloring

row i and j in the graph. Then, a distance-1 coloring with the
additional condition that every path of length four uses at least
three colors is applied.

Assume that we have the following Hessian structure:()
H00 H01

H10 H11 H12

H21 H22

. (12)

The resulting adjacency graph is visualized in Fig. 2. The ad-
ditional coloring condition that every path of length four needs
at least three colors is for this basic example trivial. Seeding
y(1) = 1 and x(2) = (1, 0, 1)> the tangent-over-adjoint model
from (9) results in x

(2)
(1) = h0+h2 = (H00, H10+H12, H22)

>.
Furthermore, a seed of y(1) = 1 and x(2) = (0, 1, 0)> yields
x
(2)
(1) = h1 = (H01, H11, H12)

>. Due to the symmetry and the
sparsity structure of the Hessian we can directly recover the
corresponding columns of the matrix.

Another technique described in [20] is the acyclic coloring
that also applies a distance-1 coloring to the adjacency graph.
This coloring technique has the additional condition that each
cycle in the graph needs at least three distinct colors. It enables
the recovery of elements of the Hessian via substitution. In
this method elements can be computed by solving a system
of linear equations. This means that the value of H10 can be
retrieved from x

(2)
(1) = (H00, H10+H12, H22)

> by subtracting
the value of H12 from the second element.

With all these methods the complexity of the AD part is of
order nc,H which is the number of assigned colors.

F. Exploitation of Symmetry and Sparsity of Third Derivatives

As already proposed in [19] the 3-tensor of the third
derivative ∇3f is super-symmetric, which means that

Tijk = Tikj = Tjik = Tjki = Tkij = Tkji .

Those elements of T that have distinct indices for i, j and
k appear six times. Considering this symmetry we only need
to compute those elements where i ≥ j ≥ k. By evaluating
the third-order adjoint model from (11) we get a column or a
row vector of the 3-tensor. Thus, seeding ei (a vector from the
standard basis with an one in element i) for the first tangent
and ej for the second tangent, we only need to consider those
tangents with i ≥ j. This yields a computational complexity
of n·(n+1)

2 evaluations to obtain T .
A second approach to exploit this symmetry is to compute

the lower triangle of the for the first half of the tensor slices
(i ≥ j for i < n

2) and the upper triangle for the second
half (i ≤ j for i ≥ n

2). We define a tensor slice Ti as the
subdomain of the full 3-tensor for a fixed i. This approach

covers the required elements with dn2 e·
(
bn2 c+ 1

)
evaluations.

Both, the first and the second approach are also applicable for
dense higher derivatives due to the fact that further symmetric
dimensions are added.

In [19] a so called induced sparsity P̃T of the third
derivative was introduced where

Tijk = 0, if Hij = 0 ∨ Hik = 0 ∨ Hjk = 0 .

Thus, the induced sparsity pattern of each slice of the third
derivative 3-tensor P̃Ti is a subset of the sparsity pattern
of the Hessian PH . Furthermore, the resulting pattern is
an overestimation of the actual sparsity pattern of the third
derivative PTi which yields

PTi ⊆ P̃Ti ⊆ PH .

A native approach to exploit this sparsity is to consider
each tensor slice Ti for its own and apply the colors that are
obtained by the Hessian coloring because PTi ⊆ PH . For the
seeding this means that the first tangent is set equals to the
standard basis vectors while the second tangent is determined
through the colors. This approach results in n·nc,H evaluations
of the third-order adjoint model for the computation of T . Due
to the super-symmetry of T the Hessian colors can be applied
for both tangents.

The first tangent will compress or merge the tensor slices
that belong to one of the colors. Because PTi ⊆ PH is valid
for all i, the union of the corresponding sparsity patterns is
still a subset of the Hessian pattern⋃

i∈c
PTi ⊆ PH , (13)

where c denotes a set of indices that belong to the same color.
Therefore, the colors of the Hessian coloring can be applied for
the second tangent to compress the slices again. This approach
yields a computational complexity of n2c,H to obtain the whole
tensor.

Since we assume to know the actual sparsity pattern of
the third derivative we can try to improve the algorithms by
considering this information. Thus, a last approach is to apply
the colors of the Hessian for the first tangent to compress
the tensor as explained in the last approach. Then, each slice
of the compressed tensor

⋃
i∈c Ti can be colored again by

using the known compressed sparsity patterns. The coloring
for the second tangent cannot be worse than the coloring
of the Hessian computation due to (13). Consequently, using
the coloring of the slices of the compressed tensor results in
nc,H · nc,T evaluations, where nc,T ≤ nc,H .

All the invented methods can be applied recursively to
exploit the sparsity of even higher derivatives. In the next
section we will apply these approaches to a simple example.

III. EXAMPLE OF THIRD DERIVATIVE COMPUTATION

To illustrate the proposed methods for the exploitation of
symmetry and sparsity we propose the following example
function.

f(x) =

n−1∑
i=0

x3i +

n−2∑
i=1

xi−1 · xi · xi+1 .

Fig. 3: Sparsity pattern of the Hessian with three colors that
are obtained by acyclic coloring

i = 0 i = 1 i = 2

i = 3 i = 4 i = 5

Fig. 4: Induced sparsity pattern of the third derivative (gray
squares) and representation of those elements that need to be
computed in the symmetric dense case (striped squares)

The corresponding sparsity pattern of the Hessian is visualized
for n = 6 in Fig. 3. In addition to the nonzero elements that
are represented by gray squares a color is assigned to each
column by using the acyclic coloring from [20]. The coloring
algorithm assigns three different colors with c0 = {0, 3},
c1 = {1, 4} and c2 = {2, 5}, such that nc,H = 3.

In Fig. 4 the induced sparsity pattern for the third deriva-
tive is given. Furthermore, the striped squares indicate those
elements that need to be computed in the dense case. The
third-order adjoint model from (11) needs to be computed for
each column that has at least one striped element that are 21
evaluations. Due to symmetry it is also possible to compute
rows of the model. Using the computation of columns for the
first half and the computation of rows for the second half
results in 12 evaluations in the dense case.

In Fig. 5 the sparsity pattern of the third derivative of the
example function is displayed. It is obvious that the induced
sparsity pattern yields a large overestimation in this example.
Furthermore, it can be seen that the colors of the Hessian can
be applied for each slice of the tensor Ti. For nc,H = 3 and
n = 6 this would result in 18 evaluations of (11).

The second approach for sparse third derivatives was to
apply the Hessian colors twice. Using these colors for the first
tangent will compress the tensor as visualized in Fig. 6. After
that, each slice of the compressed tensor is compressed again
by using these colors. This approach requires 9 evaluations of
the adjoint model to obtain the third derivative of the example
function.

Fig. 6 also belongs to the third approach where the tensor

i = 0 i = 1 i = 2

i = 3 i = 4 i = 5

Fig. 5: Actual sparsity pattern of the third derivative

i = {0, 3} i = {1, 4} i = {2, 5}

Fig. 6: Sparsity pattern of the compressed third derivative
with two colors that are obtained by acyclic coloring for each
subdomain

is compressed first by using the Hessian colors and then the
resulting slices are colored again by using the exact sparsity
pattern. The colors that are obtained by an acyclic coloring
are also visualized. The number of colors for each slice is
less than the number of Hessian colors, nc,T = 2. Thus, this
approach would result in 6 evaluations of (11).

By increasing n in this example the number of colors that
are assigned by the acyclic coloring stays constant such that
the computation is possible even for large n.

IV. SUMMARY AND OUTLOOK

In this paper we introduced our new approach for the
computation of significance information that can be used for
significance-driven approximate computing. The approach is
based on the moments method to propagate uncertainties by
using Taylor expansions. It is indispensable to use higher
derivatives to improve the accuracy of the method. Due to
the fact that the computation of higher derivatives can be very
expensive we applied coloring techniques that are developed
for the sparse Hessian computation. Unfortunately, there are
no coloring techniques for third or higher derivatives. Thus,
we introduced various methods to use the information of the
Hessian coloring for higher derivatives. All of these methods
can be used for arbitrary order of derivatives by applying them
recursively. In an example we showed that the computational
complexity of the third derivative computation can be signifi-
cantly reduced by using the proposed methods.

This work can be extended by developing coloring algo-
rithms that directly uses the sparsity patterns of the higher

derivatives. Furthermore, the proposed approach to obtain sig-
nificance information needs to be implemented and compared
to the interval-adjoint significance analysis.

REFERENCES

[1] D. Mohapatra, G. Karakonstantis, and K. Roy, “Significance driven
computation: a voltage-scalable, variation-aware, quality-tuning motion
estimator,” in Proceedings of the 2009 ACM/IEEE international sympo-
sium on Low power electronics and design. ACM, 2009, pp. 195–200.

[2] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard,
“Chisel: reliability-and accuracy-aware optimization of approximate
computational kernels,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications. ACM, 2014, pp. 309–328.

[3] J. Riehme and U. Naumann, “Significance analysis for numerical
models,” WAPCO, 2015. [Online]. Available: http://wapco.e-ce.uth.gr/
2015/papers/SESSION3/WAPCO 3 1.pdf

[4] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM, 2009.

[5] A. Griewank and A. Walther, “Algorithm 799: revolve: an implementa-
tion of checkpointing for the reverse or adjoint mode of computational
differentiation,” ACM Transactions on Mathematical Software (TOMS),
vol. 26, no. 1, pp. 19–45, 2000.

[6] ——, Evaluating derivatives: principles and techniques of algorithmic
differentiation. SIAM, 2008.

[7] U. Naumann, The art of differentiating computer programs: an intro-
duction to algorithmic differentiation. SIAM, 2012, vol. 24.

[8] J. Deussen, J. Riehme, and U. Naumann, “Automation of significance
analyses with interval splitting,” in Parallel Computing: On the Road
to Exascale, Proceedings of the International Conference on Parallel
Computing, ParCo 2015, 1-4 September 2015, Edinburgh, Scotland, UK,
2015, pp. 731–740.

[9] ——, “Interval-adjoint significance analysis: A case study,”
WAPCO, 2015. [Online]. Available: http://wapco.e-ce.uth.gr/2016/
papers/SESSION2/wapco2016 2 4.pdf

[10] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and
confidence regions. Springer, 1993.

[11] V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D. Antonopoulos,
N. Bellas, S. Lalis, and U. Naumann, “Towards automatic significance
analysis for approximate computing,” in Proceedings of the 2016 Inter-
national Symposium on Code Generation and Optimization, CGO 2016,
Barcelona, Spain, March 12-18, 2016, 2016, pp. 182–193.

[12] V. Vassiliadis, K. Parasyris, S. Lalis, and C. D. A. abd Nikolaos Bellas,
“D2.3: Advanced compiler implementation,” Center for Research and
Technology Hellas, Tech. Rep., April 2016. [Online]. Available: http://
www.scorpio-project.eu/wp-content/uploads/2016/04/Scorpio D2.3.pdf

[13] M. M. Putko, P. A. Newman, A. C. T. III, and L. L. Green, “Approach
for uncertainty propagation and robust design in CFD using sensitivity
derivatives,” 2001.

[14] B. Christianson and M. Cox, “Automatic propagation of uncertainties,”
in Automatic Differentiation: Applications, Theory, and Implementa-
tions. Springer, 2006, pp. 47–58.

[15] D. Ghate and M. B. Giles, “Inexpensive Monte Carlo uncertainty
analysis,” Recent Trends in Aerospace Design and Optimization. Tata
McGraw-Hill, New Delhi, pp. 203–210, 2006.

[16] M. Menshikova, “Uncertainty estimation using the moments method
facilitated by automatic differentiation in Matlab,” Ph.D. dissertation,
2010.

[17] M. Beckers, “Toward global robust optimization,” Ph.D. disserta-
tion, Hochschulbibliothek der Rheinisch-Westfälischen Technischen
Hochschule Aachen, 2014.

[18] R. M. Gower and A. L. Gower, “Higher-order reverse automatic differ-
entiation with emphasis on the third-order,” Mathematical Programming,
vol. 155, no. 1-2, pp. 81–103, 2016.

[19] G. Gundersen and T. Steihaug, “Sparsity in higher order methods
for unconstrained optimization,” Optimization Methods and Software,
vol. 27, no. 2, pp. 275–294, 2012.

[20] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color is your
Jacobian? Graph coloring for computing derivatives,” SIAM review,
vol. 47, no. 4, pp. 629–705, 2005.

[21] R. C. Smith, Uncertainty quantification: theory, implementation, and
applications. SIAM, 2013, vol. 12.

