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Abstract—Approximate computing has emerged as one of
the most important breakthrough in many scientific research
areas. It exploits the inherent tolerance of algorithms against
computational errors in order to outperform the original ver-
sions by worsening the result quality. The research commu-
nity demonstrated the effectiveness of the trade-off between
accuracy and performance, such as energy consumption, time
and occupied area for integrated circuits, and many approx-
imate computing methodologies were proposed. Unfortunately,
introduced approaches fit in specific application domain and
a general and systematic methodology to automatically define
approximate algorithms is still an open challenge. Bearing in
mind such a lack of generality, in previous works we introduced
a methodology which makes use of software mutation to obtain
approximate versions of a software defined algorithm. Based on
this concept, we developed IDEA, a design exploration tool that
relies on a source-to-source manipulation technique, implemented
by an open-source tool called clang-Chimera, in order to apply
code transformations that approximate the computation of a
C/C++ algorithm. In this paper, we detail the methodological
flow introduced by IDEA and we describe every step needed to
have available any approximate computing technique by a walk-
through. Furthermore, we provide experimental results which
highlight the effectiveness of the approach, in particular by
searching for approximate variants applying the loop perforation
technique.

I. INTRODUCTION

The Approximate Computing term has been introduced for
indicating a design paradigm that implements efficient hard-
ware circuits and software components by tolerating inexact
outputs. It has demonstrated by the literature the effectiveness
of imprecise computation for efficient design of software codes
or hardware components that implement inexact algorithms
thanks to their inherent resiliency. This property characterizes
algorithms such that they return acceptable outcomes despite
some of its inner computations being approximate or impre-
cise [1], [2]. The inherent resiliency is prevalent for domains in
which outputs of algorithms have to be interpreted by humans,
such as digital signal processing of images and audio, but
also data analytics, web search and wireless communications
exhibit an equivalent property [3], [4], [5].

Mainly, the Approximate Computing design exploits ap-
proaches that leverages inherent resiliency through optimiza-
tions which trade outputs quality off for better performance,
such as time, energy consumption, occupied area, and so

on [6]. As for the result quality, several metrics can be adopted
to estimate the loss of precision with respect to the exact, or
generally the best, result.

Many research papers in the literature explored the pos-
sibilities given by the Approximate Computing, as well as
they introduced new methodologies to automatically define
best trade-off configurations between result quality and perfor-
mance. However, there are still open challenges that hold back
Approximate Computing for a wider employment, especially
for the implementation of custom Integrated Circuits (ICs). In
particular, the key point is a lack of a general design space
exploration method that searches for possible variants of an
algorithm w.r.t. the grade of the inaccuracy.

Most of the proposed techniques try to define new methods
to generate alternative versions of specific operations with less
resources. For instance, there are several proposals of approx-
imate arithmetic operations [7], [8], [9]. Such variants differ
from speculative implementations, because are not focusing
on generate alternatives and restoring the possible introduced
error [10], [11], [12]. Other techniques generate variant by
considering a high level description of the algorithm or their
implementation at low-level [13], [3].

Aiming at define a general method for considering arbitrary
approximate computing techniques, we developed IDEA, first
presented in [14], which is a design exploration tool able to
find approximate versions for an algorithm, coded in C/C++,
by mutating the original code. IDEA employs an extensi-
ble source-to-source transformation tool, the clang-Chimera,
which analyzes the Abstract Syntax Tree (AST) to apply
user-defined code mutators. Being extensible, clang-Chimera
gives the possibility to implement any approximate computing
technique.

In this paper, we describe the methodology introduced by
the IDEA approach and, to this aim, we detail the extension of
clang-Chimera with an approximate computing technique. In
particular, we implement the loop perforation technique and
we give some experimental results.

The remainder of the paper is structured as follows. In
Section II we briefly report the state of the art of approximate
computing tools available in the literature. In Section III we
describe the mutation code approach for obtaining approxi-
mate variants, while Section IV illustrates some experimental



results. Section V draws the conclusion of this manuscript.

II. RELATED WORK

In the literature, several papers presented Approximate
Computing methodologies and tools, such as ACCEPT [3]
and its extension REACT [15]. ACCEPT is an adaptation for
C/C++ of EnerJ [16], which has been designed to work in the
Java environment. ACCEPT introduces an extension of the
C/C++ language to provide programming annotations.

Such tools give to designers a programmed guided technique
for the inner-implemented approximation techniques. The im-
plementation of ACCEPT involves the LLVM Intermediate
Representation (IR) [17], providing a modified compiler to
support the language extension. REACT uses a compiler-
infrastructure to create a framework for the rapid exploration
of well-known approximate computing techniques, proposing
an energy model to evaluate the actual power saving for
different approaches. REACT extends ACCEPT, so it exploits
the LLVM IR to manipulate algorithms written in C/C++.

The ABACUS tool, described in [13], directly manipulates
hardware circuits, which are coded in Hardware Description
Languages (HDL). It adopts a greedy algorithm to perform
a design exploration to find Pareto-optimum solutions with a
trade off between accuracy and power consumption.

Authors of [18] introduced Precimonious, which provides an
automatic tuning tool for IEEE 754 Floating Point standards.
Indeed, Precimonious uses the LLVM IR to perform a float-
type exploration by means of annotations. This way allows the
user to specify the maximum loss in accuracy.

As for the approximation of operations which involve nu-
meric types, authors of [19] introduced a power-aware design
methodology by exploiting a word-length optimization. They
proposed a tool, called PowerCutter, to dynamically analyze
the range of variables and reduce the precision of arithmetic
operations for C/C++.

In [20] the authors illustrated the CMUFloat, a C++ library,
that redefines operations for integers, shorts and floating point
types in order to simulate reduced bit-width. They used the
library to simulate digital signal processing units realized in
an approximate manner.

III. EXTENSIBLE DESIGN EXPLORATION FOR
APPROXIMATING ALGORITHMS

Existing approximate computing tools consider specific
transformations and specific domains, ss previously discussed
in sections II, . Furthermore, existing tools mostly are not fully
automatic and provide a guided approach for approximation.
Conversely, we aim to define a general approach considering
the following observations:

1) the error introduced by approximation strictly depends
on the algorithm and on the application, hence it has to
be specifically defined by the designer;

2) Approximate Computing techniques have to be automat-
ically applied by analyzing the algorithm, in order to
generate approximate variants of it;
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Fig. 1. Execution flow of IDEA tool.

3) each variant has to be characterized by a quality value
w.r.t the original output; in particular, generated variants
should be as close as possible to an error threshold
defined by the designer;

4) each Approximate Computing technique has to be ap-
plied on the original code of the algorithm, in order to
execute each variant in software.

Estimation of the error introduced by the approximation
is a crucial operation. Indeed, whenever it is estimated by
considering differences between the outcomes of the original
algorithm and the approximate versions, the user has to define
significant input to make it an effective value. Moreover, the
error definition is itself not a trivial task, as many metrics can
be employed to evaluate how far are approximate results from
the original one.

The exhaustive search of every realizable approximate
version is not feasible since the number of combinations
explodes very soon, even taking into account a limited subset
of Approximate Computing approaches. Furthermore, these
approximate versions have to be evaluated in terms of per-
formance, in order to establish the best trade-off between
approximation and performance gain.

A. How IDEA works

The IDEA workflow, introduced in [14], [21], is illustrated
in Figure 1. The process considers algorithms encoded in
C/C++ language: this way the original algorithm and its
approximate variants can be easily simulated in software.



As one can notice, the entire process involved 2 tools: clang-
Chimera and IDEA.

Clang-Chimera tool is a mutation engine for C/C++ code
based on the Clang compiler and written in C++. It is provided
as a framework to rapidly develop source-to-source transfor-
mations on C/C++ code by means of Clang facilities, such
as ASTMatcher and Rewriter. Clang-Chimera borrows
the terminology from the mutation testing technique and
introduces the concept of mutator and mutation operator. A
mutator encapsulates a specific transformation logic on the
C/C++ code and it is is composed of matching rules, the
rules to match specific AST patterns, and mutation rules, the
rules to modify the matched AST patterns. Chimera adopts
the AST to analyze and manipulate the source code of a given
algorithm. Indeed, the AST is a tree-based representation and
each node (AST node) of the tree denotes a language construct
of the analyzed code. An ensemble of AST Nodes defines
an AST pattern, which corresponds to a specific structure
of the code. A mutation rule modifies an AST pattern that
matches a specific matching rule. A mutation operator, or
simply operator, is a collection of mutators and provides a
facility to group up related mutators.

The most important aspect of the tool is the ease of exten-
sion. Indeed, to extend clang-Chimera it is required the inher-
itance from the Mutator class to create new mutators and
new Operator objects which collect newly created mutators.
This way, clang-Chimera can integrate any Approximate Com-
puting technique by defining mutation operators. Moreover, for
the Approximate Computing technique in which the mutations
are isolated onto the AST (and hence in the code), clang-
Chimera allows to define a so called FOM operator (First
Order Mutation). Differently, a High Order Mutation (HOM)
operator has to be used when the Approximate Computing
techniques has to accumulate mutations onto the AST before
obtain the proper approximate code.

Once the operators are defined and configured by the user,
clang-Chimera is able to perform mutations over a C/C++
project. The outputs of clang-Chimera (as reported in Figure 1)
are: (i) C/C++ project files mutated by configured operators;
(ii) a configuration file which reports what has been mutated
w.r.t. the original files and which kind of operator has been
applied.

The second tool in the flow is IDEA, which performs a
branch and bound (B&B) exploration. The design space ex-
ploration is accomplished by manipulating the approximation
grades of an applied approximation technique. Indeed, IDEA
internally compiles the target variant of the algorithm and,
thanks to the information contained in the clang-Chimera re-
ports, is able to modify its in-memory code to enable a partic-
ular approximation technique and to modify the approximation
grade of such technique. Each step of the B&B approach uses
a configuration incrementing the approximation grade of the
Approximate Computing Technique or activating it. It follows
that, at each iteration, IDEA generates an approximate version
of the target algorithm, which exhibits an error greater than or
equal to the error that has been observed in previous iterations.

The error is estimated through an user-provided error function.
Without loss of generality, we can claim that this function is
a monotonic function of the approximation grade and it is
equal to 0 when is executed over the original version of the
algorithm.

The execution of the B&B proceeds as a depth-first-search
in a tree, namely it explores as far as possible along each
branch before back-tracking. Whenever a configuration is
characterized by an error that crosses the threshold, it is
pruned from the tree and a different Approximate Computing
technique is considered. Once the exploration terminates, the
leaves of the execution tree are Pareto-optimum configurations
of the original algorithm, such that they cannot be further
approximated without crossing the error threshold. It follows
that the tree depth, and hence the execution time, is propor-
tional to the threshold, while the tree breadth depends on
how many Approximate Computing techniques are applied by
clang-Chimera.

In order to manipulate a given Approximate Computing
technique, IDEA needs a plugin which has the role of in-
terpreting the outputs produces by an operator. Indeed, an
operator implemented in clang-Chimera produces a report
listing every possible location in which a mutation can take
place.

B. Extending IDEA with the Loop Performation technique

In order to give a complete example of IDEA set-up, in
this paper we illustrate the development of two new operators,
called LoopFirst and LoopSecond, which implement the loop
perforation techniques described by Lee&Jain in [22]. The
loop perforation works by reducing or skipping some cycles
of an iteration, obtaining an approximate version with better
time performance. In [22] the loop performation is introduced
in two different forms, hence we name the first operator
LoopFirst, which applies the first described loop perforation
technique, that is

for(i=0; i<n; i=i+stride){body}.

while the second defined operator, named LoopSecond, applies
the other technque, that is

for(i=0; i<n; i++)
if(i % stride != 0){body}

These two operator are realized as HOM ones and they
are realized in clang-Chimera by means of inheritance of the
Mutator class. The inheritance requires to override three
functions, namely the getStatementMatcher, match and mutate.
The first function defines the matching rule with a coarse
grain approach by using the AST-Matcher, which is provided
by the Clang compiler suite. Conversely, the function match
is responsible for the fine grain match. As the operators are
defined as HOM, the function is invoked each time an AST
node passes the coarse grain match. The main role of the match
is to define temporary variables, which has their scope within
the current node of the AST, useful to obtain the mutation
on the code. Moreover, whenever the fine grain rule applies



a transformation, the concern of the coarse grain match is
to invoke the textitmutate function. Hence, such function is
actually invoked each time a mutation is successfully applied
onto an AST node. The mutate function uses the Rewriter,
provided by Clang compiler suite, and saves a report for each
accomplished mutation.

Hence, in order to correctly implement a loop perforation
technique, the function getStamentMatcher filters out every
node which is not a child of a forStmt node onto the whole
AST. As for the LoopFirst, the getStamentMatcher takes into
account nodes which properly defines a termination condition
and an increment statement, while the LoopSecond takes
into account nodes which defines the init statement and the
termination condition. These conditions, which are children
nodes of a forStmt, are passed to the match function, which
is responsible to modify the condition, accordingly to the
operator that has to be applied. For each mutated loop, a new
variable is added onto the AST, which is called stride. Such
a variable assumes the same type of the variable involved
into the for statement and is named with a unique number
concatenated each time. For instance, the following loop:

for(i=0; i<n; i++)

after the mutation by the operator LoopFirst

for(i=0; i<n; i=i+stride)

otherwise, in case of LoopSecond:

for(i=0; i<n: i++)
if(i%stride != 0){body}

Once a new mutator has been defined, clang-Chimera
requires the registration of such mutator by invoking the
registerMutationOperator function.

IV. EXPERIMENTAL RESULT

In this Section, we aim to demonstrate the efficacy of the
methodology introduced by the IDEA approach by performing
approximation on some algorithms. In particular, we target
some mathematic functions to be evaluated through the Taylor
series. To retrieve the value of a given function by using the
Taylor expansion requires the summation of infinite terms.
Such summation is nested within others in the case of multi-
variable function. Such example significantly stresses the
clang-Chimera ability to perform automatic mutation and the
B&B approach implemented by IDEA.

We code in C/C++ the computation of the function
f (x, y) = ex · log (1 + y) by iterating the expansion in Taylor
series. Then, we run the flow described in Figure 1 to obtain
the Pareto frontier in terms of approximate configurations
applying the loop perforation technique. As for the qual-
ity of the output, we configure a function which calculates
the average proximity of some real points for the function
f (x, y) = ex · log (1 + y). The quality threshold is fixed to 3
for both loop perforation technique.

Running IDEA with the FirstLoop causes the exploration of
about 1× 106 variants and less than 1× 104 are leaves of the

Fig. 2. Graphs of execution time over the error for each experiment executed
by IDEA with both loop performation techniques

B&B, i.e. Pareto configurations. Conversely, IDEA configured
with the FirstLoop performs the exploration of about 1× 105

variants and less than 1× 102 are Pareto configurations. Both
campaigns executes in less than 1 minute.

In Figure IV we report a graph with the error value and
execution time of each experiments. As for the LoopFirst
operator, most of the experiments (blue triangles) reside near
the error axis, evidencing the inadequacy of the technique
to generate configurations with lower time execution. Other
solutions results give worse configurations in terms of trade-
off.

As for the LoopSecond operator, the Pareto frontier is
clearly visible as a vertical line, meaning that the technique
is able to remove cycles which do not contributes to obtain
better results, even though the best configuration is obtained
by the LoopFirst.

V. CONCLUSION

So far, we demonstrated the feasibility of the IDEA tool in
performing a design space exploration by taking into account
Approximate Computing techniques and a target algorithm,
coded in C/C++. To the best of our knowledge, this is the first
attempt to approach Approximate Computing with a source-
to-source transformation tool which makes use of mutation
operators. To this aim, IDEA relies on clang-Chimera, a
source-to-source transformation tool, which can be extended to
support any Approximate Computing technique. By means of
a B&B exploration approach, IDEA applies and accumulates
approximations which are configured in clang-Chimera and for
each obtained configuration it performs an error estimation,
trimming ones which exhibit an error value greater than a
configure threshold.

This paper fills the gap of the setup phase by detailing
the implementation of a well-known Approximate Computing
technique, which is the loop perforation. We provided an
exhaustive description of what is required to implement a new
operator, describing each required step. We also proved the
efficacy of the loop perforation approach by running IDEA
on a case study.
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