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Abstract—We introduce a methodology to use Artificial Neu-
ral Networks (ANNs) for automatic error detection on outputs
of selected parts of a program which execute on unreliable
hardware that operates at frequencies beyond the nominal
levels. We use an OpenMP inspired programming model and
an accompanying runtime system which enables developers to
specify the significance of tasks regarding their effect to the
output quality of the program. The runtime system executes
the least significant tasks on cores which operate unreliably
and uses specially trained ANNs to detect errors which are
then corrected by a user supplied error correction function.
We test our approach using with a benchmark application that
uses the Discrete Cosine Transform (DCT) kernel to compress
images. A fault injection campaign indicates that it is possible
to achieve a 1.77x speedup over a fully reliable execution of
the code, with a minimal penalty to output quality (43.46 dB
Peak Signal to Noise Ratio between the de-compressed and
the original image compared to the 43.67 dB PSNR of a fully
reliable execution).

Keywords-Fault tolerance, Software reliability, Software per-
formance, Artificial neural networks

I. INTRODUCTION

Traditionally computer systems are expected to function
reliably. However, as datacenters grow rapidly and are
expected to grow by 50x in the next years, accomplishing
such strict reliability requirements becomes harder. Recent
studies suggest that if an Exascale system was created using
today’s components, its time to failure would be between 3
and 37 minutes [16], [2]. Corrupted data are also expected
to appear more frequently [3].

In High End Computing with parallel computations on
clusters with 10s/100s of thousands of cores, errors have
become a norm and not the exception [6]. Prior work
demonstrates that the execution time spend to perform
checkpointing/restoring procedures ranges from 85% to 55%
of the total execution time of the application [4].

Consequently, there is a need to create an efficient
methodology to detect errors during execution time. This
work uses Artificial Neural Networks (ANNs) to detect
errors during the execution of code. We propose a method-
ology to train ANNs whose goal is to detect errors that
negatively effect the output of unreliably executed code.
Then we apply our methodology on a multimedia benchmark
which uses Discrete Cosine Transform and quantization
to compress images (DCT). We evaluate our approach
using software fault injection, to simulate an unreliable

environment. Finally, we measure the benchmark speedup
and output quality degradation.

Our goal is to increase application performance by setting
the processor to higher frequency without increasing its
voltage supply. However, since the hardware operates at a
much higher frequency than it can reliably support, hardware
errors might occur.

Using a software fault injection approach, we measure the
speedup obtained via Unreliable Computing coupled with
Artificial Neural Networks to be on average 1.82x compared
to a fully Reliable execution. Images obtained through our
software hardening methodology have high output quality
with an average Peak Signal to Noise Ratio (PSNR) value of
about 43.46 dB. A respective error-free execution produces
images with 43.67 dB PSNR.

The rest of the paper is structured as follows. Section II
discusses Unreliable Computing. Section III details our
approach to automatic error detection via ANNs. In Sec-
tion IV we evaluate our methodology using DCT as an
example benchmark. Afterwards, in Section V we provide
an overview of related work. Finally, Section VI concludes
this work and presents directions for future research.

II. UNRELIABLE COMPUTING

The performance increase of modern hardware is mostly
due to the effects of reducing the size of semiconductors.
However, scaling down the semiconductors increases the
manufacturing variability which results in less deterministic
transistor characteristics. As a result, chip yield is reduced,
and manufacturers have to counter these issues with in-
creased voltage margins and guard bands. Such guard bands
typically account for the worst case scenario.

Our approach to Unreliable Computing exploits the Sig-
nificance [17] of operations as an algorithmic property
to gracefully trade-off output quality with execution time
reduction. Significance of operations is a quantitative metric
for measuring the effect that a code has to the output quality.
A highly significant code produces data which if slightly
perturbed lead to a large change on the output quality.

In the general case, executing computations on unreli-
able hardware is unpredictable. There is a chance that a
code may terminate successfully and produce 100% correct
results. However, it may also terminate abruptly and fail
to produce any output. Another possible scenario is that



the code enters an infinite loop and never terminates, or
even produces inaccurate results which in the literature are
called Silent Data Corruptions (SDCs). A requirement to
using Unreliable Computing efficiently is to gracefully trade-
off output quality with power/energy efficiency. We achieve
this requirement by only executing code using unreliable
hardware when it does not heavily influence the final output
quality. In other words, only the least significant parts of
an application may be executed unreliably to minimize the
exposure of significant computations to errors.

We adopt and expand on the task-based programming
paradigm of OpenMP [12]. Our programming model en-
ables developers to explicitly declare the significance of
computations at the granularity of tasks, depending on how
strongly they contribute to the quality of the end result. The
programming model supports error-checking and correction
mechanisms to mitigate the effects of executing tasks on
unreliable hardware to the final output quality. An accom-
panying runtime system executes less significant tasks on
unreliable but faster cores and the rest of the code on reliable
hardware. Error detection and correction can be realized
using result-check and correct functions which are invoked
by the runtime system on task completion or failure.

A. Error detection for unreliable tasks

Simply executing only the least significant parts of an
application using unreliable hardware is not enough to guar-
antee that the program produces acceptable output. An error,
even if it manifests during the execution of a non-significant
part of the application may still severely hinder the quality of
the output. It follows that, hardware faults have notoriously
unpredictable effects. To this end, applications need also
detect and correct errors that happen during the execution of
their unreliable portions. This introduces an overhead to the
execution of the application, which is conceptually similar to
the guard-bands and over-provisions that hardware designers
introduce to their work, albeit at the software level.

Recent studies have focused on designing mechanisms
that allow the execution of code on top of unreliable hard-
ware while gracefully handling errors as well as detection
and correction of SDCs [15], [9], [1], [11], [14].

In this work we investigate the efficiency of ANN assisted
error checking. ANNs, in their purest form, can be seen
as a sets of nodes in pipeline. Each set, or stage, in the
pipeline is a Neural Network Layer. ANNs were designed
to loosely model the functionality of the network of neurons
in a brain. This biologically inspired tool can theoretically
approximate any function by observing its inputs and outputs
and adjusting its nodes’ weights, achieved during a process
that is called training. In this work, we propose and test the
use of ANNs which we first train to detect errors to the
output of tasks.

Algorithm 1: Error Detection using Artificial Neural
Networks

Input : Application source code, Src
Output: Hardened application source code

S1: Srctasks = partitionCodeIntoTasks(Src)
S2: outputs = performSoftwareInjection(Srctasks)
S3: outputslabeled = label(outputs)
S4: outputsnormalized = normalize(outputslabeled)
S5: ANNS = generate()
S6: ANNStrained = train(ANNS, outputsnormalized)
S7: Functions = convertANNtoC(ANNS)
S8 Srcbatch = groupTasksInBatches(Srctask)
S9: Srchardnd = attachANNFnc(Srcbatch, Functions)

B. Error correction

When a task’s output are detected to be erroneous, cor-
rective action must be taken so that the faulty values do
not propagate to subsequent computations so that no output
quality degradation occurs.

The simplest method of correcting a task that was ex-
ecuted unreliably is simply to re-execute it on reliable
hardware. However, this negates the benefits of executing
on top of unreliable hardware. Such a correcting step should
only be taken when tasks are rarely found to be faulty. On
the other hand, if the chosen error detection mechanism is
inaccurate there is the possibility of failing to re-execute
tasks which have produced wrong outputs. As such, even
if task re-execution is used to correct errors the output of
partially unreliable execution of an application might still
differ than a fully reliable one.

An alternative to re-executing tasks is to exploit program-
mer wisdom in order to create an approximate alternative of
the original task code which is less accurate but cheaper in
terms of computational costs. Such approximations might
also be generated using automatic software [17].

III. METHODOLOGY

The ideal error detection function identifies all errors and
never mis-characterizes correct output values as erroneous.
In the general case, designing and implementing such a
function is easier said than done. Manually implementing
error detection and correction functions for an application is
a time consuming and tedious process.

Our proposed methodology exploits the fact that an Arti-
ficial Neural Network (ANN) may, potentially, approximate
the solution to any problem given enough observational data
and computational complexity in the form of a complex
artificial neural network topology. Algorithm 1 shows the
pseudo-algorithm that drives our training methodology for
ANNs.



We start by partitioning the original code into tasks (S1).
Each task must have well defined inputs and outputs whose
size does not change for different program inputs. We use
Caffe [8] to train and generate ANNs which detect errors on
the outputs of tasks. These ANNs consist of a single input
layer, one or more hidden (intermediate) layers, and a single
output layer. The hidden layers are either Fully Connected
layers or Rectified Linear Unit (ReLU) layers. Note that, the
requirement of having fixed size task inputs and outputs can
be eliminated by employing Recurrent Neural Networks [7].
In this work, we do not explore this type of ANN because
it is an orthogonal choice to error detection.

Steps S2 through S4 generate the training and test data of
the ANNs. In S2 the application undergoes a software fault
injection campaign whose purpose is to generate enough
observational data to be used during the training phase.

Step S3 uses an error-free execution of the application
to label the data produced in step S2 as acceptable, or
unacceptable in a per-task fashion. Acceptable results differ
slightly from the corresponding error-free output. In this
document we used 2% as the selected threshold; we plan
to explore different trade-ofs by varying this threshold in
future work. Allowing small deviation from the correct value
enhances the generality of the ANN and reduces the chances
of over-fitting the ANNs. An over-fitted network performs
great when it operates on its trained data but its efficiency
is greatly diminished when it encounters unseen data.

S4 performs data normalization by means of scaling the
labeled data produced in step S3 to the [−1, 1] range. Since
the data are computed under the presence of errors we
only consider error-free entries to calculate the maximum
and minimum values. We also make sure that the training
data set is equally distributed between acceptable and non-
acceptable entries. It is nearly impossible to have a tight
bound for all possible, including potentially erroneous, data.
Consequently, at runtime during the scaling of ANN inputs
we forcefully clip values to the range [−10, 10] to keep the
inputs of the ANN used within normal value-range.

Step S5 generates a set of ANNs. Our algorithm generates
hidden layers in pairs, we refer to such a pair as an Artificial
Neural Network Level (ANNL). Each ANNL consists of a
Fully Connected (FC) layer which is directly followed by a
ReLU layer. The size of the ANNL is the number of nodes
that form each layer, e.g. an ANNL of size 4 contains a
FC layer of 4 nodes followed by a 4 node ReLU layer.
To limit the exploration space of possible topologies we
generate ANNs which contain from zero up to two ANNLs.
The size of each ANNL is either a power of two between the
range [4, 32] or 0. Thus, when targeting at most 2 ANNLs
our methodology generates 21 ANN configurations in total
plus one FC layer right after the input layer, and one FC
layer to produce the output layer.

At this point the ANNs generated by the last step of the
process undergo training in step S6. We use Caffe to perform

forward and back-propagation of the ANNs on the train
data-set. Every 1000 train epochs we perform the forward
operation of the ANNs using the test data as input and record
their accuracy. In this context, the accuracy of the ANN
is defined as the relative error as computed between the
ANN’s output for a given input compared to the correct
output classification. We keep track of the best obtained
accuracy and a snapshot of the ANN at the best epoch. The
process ends when no improvement to the ANN’s accuracy
is recorded within 25000 epochs.

In step S7 the framework generates a function (in C) that
performs the computations of an ANN and reports whether a
task output is acceptable or not. This effectively removes any
run-time dependencies to Caffe and enables the inspection
and analysis of the error detection function. Furthermore,
the code which performs the operations of the ANN is fully
unrolled. It comprises multiplication and addition operations
between floating point data for each FC layer and binary
instructions for each ReLU layer. This enables the use of
fixed point arithmetic to further optimize the execution time
of the error detection phase as well as the use of specialized
hardware for reduced energy/power cost.

The last two steps of the process (S8 and S9) involve
structural changes to the application code as produced by
S1. In S8 since tasks might be too fine grained for practical
use the application developer is prompted to group the tasks
into task-batches. In S9 the final versions of the application
are finished by hardening them against errors through the C
error detection functions generated in step S7

At this point, the application developer has to decide what
happens when an error is detected. He can either re-execute
tasks which are considered erroneous, or try to correct the
errors by means of approximating the faulty task.

The results of fault injection campaign are analyzed to
choose the ANN which results in the desired speedup and
output quality level. We discuss more on this in the following
section which uses DCT as a running example.

IV. EXPERIMENTAL EVALUATION

We evaluate ANN assisted error detection using Discrete
Cosine Transform (DCT) as a running example. DCT is a
module of video compression kernels, which transforms a
block of image pixels to a block of frequency coefficients.
The tasks that compute low frequency coefficients, close to
the upper left corner of each 8x8 frequency block, are more
significant than the ones computing coefficients towards the
lower right corner of the block because the human eye is
more sensitive to low frequency changes. We instruct the
runtime to execute tasks which compute the top-left corner
of each 8x8 frequency block reliably, and all remaining tasks
unreliably. Unreliable tasks that are declared erroneous by
the ANNs have their output set to zero. Finally, infinite
loops are handled using a timeout functionality of our
programming model at task synchronization points.



We simulate an unreliable hardware environment through
the use of software fault injection. For the hardware com-
munity, the Point of First Failure (PoFF) indicates the
point at which circuits start to exhibit massive errors. More
specifically, one error every ∼10 million cycles [5]. Prior to
this point errors still occur, however at rates that are orders
of magnitude lower. The PoFF is met when the nominal
supply voltage differs from the actual supply voltage by
15%. Based on these findings we use an Intel(R) Core(TM)
i7-4820K CPU @ 3.70GHz processor to perform software
fault injection. We select two nominal points, one is used as
the reliable but slow domain and the other as the unreliable
but fast domain. Their nominal supply voltage differs by
15%, the slow and reliable domain being (frequencylow =
1.6GHz, voltagelow = 0.9V ) and the fast but unreliable
domain (frequencyhigh = 3.7GHz, voltagelow = 0.9V ).
This effectively emulates a processor whose highest fre-
quency that can be executed reliably is 1.6GHz but can
be scaled to 3.7GHz for an unreliable execution. Using
this information we perform a fault injection campaign and
measure the number of cycles spent in each domain to
synthetically compute the execution time of experiments.

For DCT we always execute the most significant tasks
of DCT reliably which amounts to exactly 12.5% percent
of total tasks. To determine the fault injection campaign’s
number of experiments we consult [10] and opt for a 95%
confidence level and 2.5% error margin which amounts to a
total of 31815 experiments. Upon the completion of the fault
injection campaign, we collect the execution time and output
quality metrics and then select the top 8 ANN topologies
with respect to the output quality.

In Figure 1 we show the probability of DCT producing
output images with at least a specific Peak Signal to Noise
Ratio (PSNR) for the 4 most interesting ANN topologies.
An error free execution of the benchmark yields an output
quality of 43.67 dB (Figure 3). With this in mind we can
see that 2 out of the 21 ANNs, consisting of the layer
topologies 8, 32, 8, 1 and 8, 32, 16, 1, result in PSNR values
that are higher than 43.6 dB with a 99.93% probability. But
these are the two slowest ANNs, as seen in Figure 2. Notice
that the ANN with layers 8, 4, 4, 1, produces images with a
43.46 dB PSNR (Figure 4) but at a much higher speedup
of 1.82X. Consequently, it makes sense to use this ANN
for error-detection as it computes almost indistinguishable
outputs compared to error-free executions of the application
with a much smaller execution time. In Figure 5 we show the
differences between Figure 3 and Figure 4. Notice that errors
appear when there are blocks of pixels with high frequency
changes, like the separation between sky and sea level and
rough textured rocks.

Another interesting point, which is illustrated in Figure 2,
is that worse results do not necessarily come with the benefit
of faster execution as is typically the case with Approximate
Computing. Even though the 8, 8, 8, 1 ANN is slower than
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Figure 1: The probability that an ANN results in images with
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(1) of each ANN corresponds to the input and output layers
respectively. The ANNs are listed in decreasing execution
time see Figure 2 for a more detailed speedup, output quality
comparison
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Figure 2: Speedup vs average quality comparison for the
top 8 ANN topologies in terms of output quality. The X
axis indicates the ANN topologies. The left Y axis shows
the speedup with respect to a golden/error-free execution.
The right Y axis shows the average output PSNR

8, 4, 4, 1 it does not lead to better output quality levels.

V. RELATED WORK

Two offline debugging mechanisms and three online
monitoring mechanisms for approximate programs are pre-
sented in [15]. Among the offline mechanisms, the first one
identifies correlation between QoR and each approximate
operation by tracking the execution and error frequencies of
different code regions over multiple program executions with
varying QoR values. The second mechanism tracks which
approximate operations affect any approximate variable and
memory location. The online mechanisms complement the
offline ones and they detect and compensate for QoR loss
while maintaining the energy gains of approximation. The
first mechanism compares the QoR for precise and ap-
proximate variants of the program for a random subset of
executions. This mechanism is useful for programs where
QoR can be assessed by sampling a few outputs, but not
for those that require bounding the worst-case errors. The
second mechanism uses programmer-supplied ”verification
functions” that can check a result with much lower overhead
than computing the result. The third mechanism stores past
inputs and outputs of the checked code and estimates the



Figure 3: Output of error-free DCT (43.67 dB PSNR)

Figure 4: Output of partially unreliable DCT using the
8, 4, 4, 1 ANN to detect errors (43.46 dB PSNR)

Figure 5: Heatmap of the difference between Figures 3 and 4

output for current execution based on interpolation of the
previous executions with similar inputs. They show that their
offline mechanisms help in effectively identifying the root of
a quality issue instead of merely confirming the existence of
an issue and the online mechanisms help in controlling QoR

while maintaining high energy gains. Our method could also
be applied to detect errors due to approximation but in this
work we focus on errors induced by unreliable execution.

[9] presents an output-quality monitoring and manage-
ment technique which can ensure meeting a given output
quality. Based on the observation that simple prediction
approaches, e.g. linear estimation, moving average, and
decision trees can accurately predict approximation errors,
they use a low-overhead error detection module which tracks
predicted errors to find the elements which need correction.
Using this information, the recovery module, which runs in
parallel to the detection module, re-executes the iterations
that lead to high-errors. This becomes possible since the
approximable functions or codes are generally those that
simply read inputs and produce outputs without modifying
any other state, such as map and stencil patterns. Our
approach differs in that we use an ANN to detect error
whereas [9] uses hardware accelerated ANNs to approximate
code whose output is subsequently error checked. Large
errors on the approximated computations are corrected by
means of executing the accurate code using the CPU.

Topaz [1] is a task-based framework which executes
unreliably computations. An online outlier detection mech-
anism detects and corrects, through re-execution on reli-
able hardware, unacceptable task results. Chisel [11] is a
framework which given a reliability and/or accuracy hard-
ware specification automatically selects approximate kernel
operations to synthesize a computation which minimizes
energy consumption and satisfies the accuracy specification.
Our framework dynamically operates at different energy
gain/output qualities configurations by selecting at runtime a
different reliable/unreliable task mix to gracefully trade-off
output quality with energy reduction.

Rinard, in one of the chronologically earlier efforts on
task-based error-tolerant computing, proposes a software
mechanism that allows the programmer to identify task
blocks and then creates a profile-driven probabilistic fault
model for each task [14]. This is accomplished by injecting
faults at task execution and observing the resulting output
distortion and output failure rates. The concept of Task
Level Vulnerability (TLV) captures dynamic circuit-level
variability for each OpenMP task running in a specific
processing core [13]. TLV meta-data are gathered during ex-
ecution by circuit sensors and error detection units to provide
characterization at the context of an OpenMP task. Based
on TLV meta-data, the OpenMP runtime apportions tasks
to cores aiming at minimizing the number of instructions
that incur errors. Although, similar to our approach, this
work does not consider error recovery and user-specified
approximate execution paths.

VI. CONCLUSIONS

We have presented preliminary results which indicate that
it is possible to automate the process of error checking



unreliable computations through the use of ANNs to grace-
fully trade-off performance with output quality. The best
performing ANN lead to a minuscule decrease in PSNR of
about 0.21dB while allowing for a 1.77x speedup over a
fully reliable execution of the application.

It is our immediate plan to investigate how our method-
ology fairs with a larger set of benchmarks. Beyond that,
it would be interesting to devise an intelligent metric which
combines the cost of operating ANNs and the output quality
that they achieve so that the selection of the best ANN
becomes more formal.
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