
Towards Formal
Relaxed Equivalence Checking

in Approximate Computing
Methodology

Lukáš Holík, Ondřej Lengál, Adam Rogalewicz
Lukáš Sekanina, Zdeněk VAŠÍČEK, Tomáš Vojnar

Faculty of Information Technology
Brno University of technology

vasicek@fit.vutbr.cz

Outline

• Approximate computing

• Functional approximations

• Relaxed equivalence checking

• Towards relaxed equivalence checking

2

The idea of approximate computing

• The requirement of exact numerical or Boolean equivalence
between the specification and implementation of a circuit
is relaxed in order to achieve improvements in performance
or energy efficiency [Venkatesan et al., 2011].

• The requirement of exactness can be relaxed because of:

1. limited perceptual capability of humans

2. a golden result is impossible (or difficult) to define

3. worst-case design would lead to large power consumption
(process parameter variations are large in sub-45 nm
technologies)

3

Approximate computing

• The concept of approximate computing has been developed in
different ways and at various levels of computing stack, for
example

• Software-level approximations
• EnerJ: approximate data types in JAVA [Sampson el al., 2011]

• Neural network replaces general purpose code [Esmaeilzadeh el a., 2013]

• Axilog: language annotations [Yazdanbakhs, 2015]

• Specialized processors supporting approximate computing
• Improving Efficiency of Extensible Processors by Using Approximate

Custom Instructions, [Kamal et al., 2014]

• Hardware-level approximations
• over-scaling based approximations

• functional approximations

4

Over-scaling based approximations

• Principle: Approximations are introduced by over-clocking
or voltage over-scaling (i.e. the circuits operate correctly
under normal conditions).

• Limits: The over-scaling based approach works well when
there exists few long paths in the target circuit.

5

Functional approximations

• Goal: To implement a slightly different Boolean function
that has faster or more power-efficient implementation.

• Two main methodologies were developed

• Ad hoc methods optimizing a particular component,
e.g. multipliers [Kulkarni, 2011], adders [Gupta, 2013],
median filters [Monajati, 2015]

• Design automation methods
SASIMI: Substitute-and-simplify [Venkataramani et al, 2013]
SALSA: Systematic logic synthesis using Quality Constraint
Circuits [Venkataramani et al, 2012]
ABACUS: AST-based approach [Nepal et al., 2014]

6

Design automation methods – issues and limits

• Although approximate computing techniques have shown
significant promise, moving them to the mainstream will require
several issues to be addressed, foremost among which is the
issue of modeling and analysis of accuracy. [Venkatesan, 2011]

7

Approach Circuits Accuracy measured using

ABACUS 2014 FIR filter, perceptron, block matcher training data

ASLAN 2014 MPEG encoder sequential quality constraint circuit

SASIMI 2013 Benchmarks, multipliers, adders, SAD training data

SALSA 2012 Adders, multipliers, FIR, IIR, DCT quality constraint circuit

Design automation methods – issues and limits

• Several approximate designs have been proposed that
compromise accuracy in different ways; unfortunately there
is no simple and systematic analysis methodology to
evaluate quality of candidate designs and compare them
with conventional designs or with each other.

The evaluation of quality based on training data cannot

• guarantee that a given approximate implementation meets
my accuracy requirements.

• ensure that there are no bugs in an approximate
implementation.

• be applied when only a neglible error is acceptable.

8

Relaxed equivalence checking

• Traditional formal verification techniques (combinational
and sequential equivalence checking) are designed to prove
exact Boolean equivalence between specification and
implementation and do not directly address the previous
questions.

• There is a need for relaxed equivalence checking, an
approach which is able to prove the equivalence up to some
bound.

9

Combinational Equivalence Checking

• Goal: To prove that F1(x)  F2(x) or that F1(x)  F2(x)

10

11

SAT-based Combinational Equivalence Checking

result: SATISFIABLE

model: 001 111110101
SAT solver

CNF
…

x1 x3x2

12

BDD-based Combinational Equivalence Checking

result: TRUESatOne?

ROBDD

13

How to determine arithmetic error?

result: 8SatCount ?

ROBDD

E<e1

To calculate average arithmetic
error, ei can be successively
increased from 1 to e max

Traditional methods and arithmetic circuits

• Known issues of the common methods in verification of
arithmetic circuits

• BDD application to verification of arithmetic circuits is limited
by the prohibitively high memory requirement for complex
arithmetic circuits, such as multipliers.

• SAT-based approaches are known to be computationally
expensive and not scalable.

• Proposed approach: Use a pseudo-Boolean polynomial

representation [Ciesielski, 2015] of arithmetic circuits to
determine the quality of an approximation.

14

Combinational equivalence checking using polynoials

z3 = s13_and2

z2 = s12_xor2

z1 = s8_xor2

z0 = s4_and2

s12_xor2 = s7_and2+s9_and2 -
2*s7_and2*s9_and2

s13_and2 = s7_and2 * s9_and2

s8_xor2 = s5_and2+s6_and2 -

2*s5_and2*s6_and2

s9_and2 = s5_and2 * s6_and2

s4_and2 = a0 * b0

s5_and2 = a1 * b0

s6_and2 = a0 * b1

s7_and2 = a1 * b1

15

Verification of Gate-level Arithmetic Circuits by Function Extraction [M. Ciesielski, C. Yu, D. Liu, and W. Brown, 2015]

pseudo-Booelan
polynomial

2-bit accurate multiplier

Specification:

z0*2^0 + z1*2^1 + z2*2^2 + z3*2^3 - (a0*b0+2*a0*b1+2*a1*b0+4*a1*b1)

pBSolver result: 0

Combinational equivalence checking using polynoials

z3 = 0

z2 = s5_and2

z1 = s8_or2

z0 = s6_and2

s8_or2 = s4_and2 + s7_and2 - s4_and2 * s7_and2

s7_and2 = b0 * a1

s6_and2 = a0 * b0

s5_and2 = b1 * a1

s4_and2 = b1 * a0

16

pseudo-Booelan
polynomial

2-bit approximate
multiplier
[Kulkarni et al., 2011]

Specification:

z0*2^0 + z1*2^1 + z2*2^2 + z3*2^3 - (a0*b0+2*a0*b1+2*a1*b0+4*a1*b1)

pBSolver
result: -2*a0*a1*b0*b1

Error is equal to -2 IFF a0=a1=b0=b1=1

4-bit approximate multiplier [Vasicek, 2014]

z7 = s71_or2

z6 = s69_xor2

z5 = s66_xor2

z4 = s60_xor2

z3 = s56_xor2

z2 = s34_xor2

z1 = s48_or2

z0 = s29_and2

s71_or2 = s65_and2 + s70_and2 - s65_and2 * s70_and2

s70_and2 = s44_and2 * s68_or2

s69_xor2 = s64_xor2+s68_or2 - 2*s64_xor2*s68_or2

s68_or2 = s63_and2 + s67_and2 - s63_and2 * s67_and2

s67_and2 = s62_xor2 * s61_and2

s66_xor2 = s62_xor2+s61_and2 - 2*s62_xor2*s61_and2

s65_and2 = s37_and2 * s59_or2

s64_xor2 = s44_and2+s59_or2 - 2*s44_and2*s59_or2

s63_and2 = s55_xor2 * s58_or2

s62_xor2 = s55_xor2+s58_or2 - 2*s55_xor2*s58_or2

s61_and2 = s53_xor2 * s57_or2

s60_xor2 = s53_xor2+s57_or2 - 2*s53_xor2*s57_or2

s59_or2 = s32_and2 + s54_and2 - s32_and2 * s54_and2

s58_or2 = s52_and2 + s51_and2 - s52_and2 * s51_and2

s57_or2 = s50_and2 + s46_and2 - s50_and2 * s46_and2

s56_xor2 = s45_xor2+s13_and2 - 2*s45_xor2*s13_and2

s55_xor2 = s49_xor2+s37_and2 - 2*s49_xor2*s37_and2

s54_and2 = s49_xor2 * s37_and2

s53_xor2 = s47_xor2+s16_and2 - 2*s47_xor2*s16_and2

s52_and2 = s40_xor2 * s39_and2

s51_and2 = s47_xor2 * s16_and2

s50_and2 = s38_xor2 * s42_or2

s49_xor2 = s22_and2+s35_or2 - 2*s22_and2*s35_or2

s48_or2 = s25_and2 + s30_or2 - s25_and2 * s30_or2

s47_xor2 = s40_xor2+s39_and2 - 2*s40_xor2*s39_and2

s46_and2 = s45_xor2 * s13_and2

s45_xor2 = s38_xor2+s42_or2 - 2*s38_xor2*s42_or2

s44_and2 = b3 * a3

s42_or2 = s27_and2 + s26_and2 - s27_and2 * s26_and2

s40_xor2 = s20_and2+s18_and2 - 2*s20_and2*s18_and2

s39_and2 = s28_xor2 * s19_and2

s38_xor2 = s28_xor2+s19_and2 - 2*s28_xor2*s19_and2

s37_and2 = b3 * a2

s35_or2 = s25_and2 + s32_and2 - s25_and2 * s32_and2

s34_xor2 = s11_and2+s31_nor2 - 2*s11_and2*s31_nor2

s32_and2 = s18_and2 * s15_and2

s31_nor2 = 1-s27_and2-s24_inva+s27_and2*s24_inva

s30_or2 = s21_and2 + s8_and2 - s21_and2 * s8_and2

s29_and2 = s9_and2 * a0

s28_xor2 = s9_and2+s17_and2 - 2*s9_and2*s17_and2

s27_and2 = s10_and2 * s12_and2

s26_and2 = s11_and2 * s23_or2

s25_and2 = s9_and2 * s17_and2

s24_inva = 1-s23_or2

s23_or2 = s10_and2 + s12_and2 - s10_and2 * s12_and2

s22_and2 = a3 * b2

s21_and2 = b1 * a0

s20_and2 = s15_and2 * s14_inva

s19_and2 = b2 * a1

s18_and2 = a2 * b2

s17_and2 = a2 * b1

s16_and2 = b3 * a1

s15_and2 = b1 * a3

s14_inva = 1-s12_and2

s13_and2 = b3 * a0

s12_and2 = a2 * b0

s11_and2 = a0 * b2

s10_and2 = a1 * b1

s9_and2 = a3 * b0

s8_and2 = b0 * a1

17

Specification:

z0*2^0 + z1*2^1 + z2*2^2 + z3*2^3 + z4*2^4 + z5*2^5 + z6*2^6 + z7*2^7 -
(a0*b0+2*a0*b1+2*a1*b0+4*a0*b2+4*a1*b1+4*a2*b0+8*a0*b3+8*a1*b2+8*a2*b1+8*a3*b0+16*a1*b3+16*a2
*b2+16*a3*b1+32*a2*b3+32*a3*b2+64*a3*b3)

4-bit approximate multiplier [Vasicek, 2014]

Result:

E = -a0*b0 + a2*a3*b0*b1 + 2*a0*a1*b0*b1

Input variables: a0,a1,a2,a3 b0,b1,b2,b3

18

a3 a2 a1 a0 b3 b2 b1 b0 E
1 0 0 0 1 x x 0 1 -1
2 0 0 1 1 x x 0 1 -1
3 0 1 0 1 x x 0 1 -1
4 0 1 1 1 x x 0 1 -1
5 1 0 0 1 x x 0 1 -1
6 1 0 1 1 x x 0 1 -1
7 1 1 0 1 x x 0 1 -1
8 1 1 1 1 x x 0 1 -1
9 0 0 0 1 x x 1 1 -1

10 0 0 1 1 x x 1 1 1
11 0 1 0 1 x x 1 1 -1
12 0 1 1 1 x x 1 1 1
13 1 0 0 1 x x 1 1 -1
14 1 0 1 1 x x 1 1 1
15 1 1 0 0 x x 1 1 1
16 1 1 1 0 x x 1 1 1
17 1 1 1 1 x x 1 1 2

Quality metrics:

Worst-case error: 2

Number of invalid responses: 4  17 = 68

Average error: 4  18/68 = 1.05

Conclusion

• A notion of formal relaxed equivalence checking has been
briefly introduced.

• Even if some of the equivalence checking methods can be
directly extended to support relaxed equivalence checking,
the scalability of common approaches represents a limiting
factor.

• A suitable formal relaxed equivalence checking method
needs to be developed.

19

Záhlaví (01.01.2016) 20

Thank You For Your Attention !

