The Fidelity Shider: a User-Defined Method to Trade
off Accuracy for Performance in Canny Edge
Detector

Valery Kritchallo!, Erik Vermijz, Koen Bertels', and Zaid Al-Ars!

'Delft University of Technology, Delft, the Netherlands
2IBM Research, the Netherlands

email: v.v.kritchallo@tudelft.nl

Abstract—

This paper presents the concept of a fidelity slider, which is a
user-defined method that enables trading off accuracy for perfor-
mance in a parallelized application. The slider is defined in the
context of the Canny edge detector, but can be generalized to other
image processing algorithms. The slider moderates discontinuity
issues introduced by an image-slicing technique used to increase
the level of the parallelism in the Canny edge algorithm, and
allows for strong scalability across multiple cores. The domain
decomposition-based technique used by our method is a top-
level image-slicing loop incorporated into the algorithm to process
segments of an image concurrently. The slider controls three
factors to moderate the aggregate output data divergence induced
by the parallelized Canny edge algorithm: 1. image slice overlap
size, 2. the degree of histogram synchronization, and 3. the edge
tracing continuity factor. Results show that the fidelity slider is
able to control the tradeoff from a speedup of 7x at 100% accuracy
up to a speedup of 19x at 99 % accuracy, for an image of 8000x8000
pixels processed on an Intel Xeon platform with 14 cores and 28
hardware threads.

I. INTRODUCTION

The concept of approximate computing is being investigated
as a method to increase the performance of algorithms that
do not scale very well on a distributed computing infras-
tructure. Performance can be boosted by relaxing some of
the requirements of the algorithm being executed (e.g. data
dependencies) to enable a more efficient utilization of the
available computational resources. Such methods promise sig-
nificant improvements in performance at the expense of a lower
accuracy of the algorithms [[1]-[3]].

Image processing algorithms have been popular candidates
for applying approximate computing methods to, as they lend
themselves readily to parallelization using input data segmen-
tation, an approach known as domain decomposition [4]-[6].
However, there has not been a systematic approach to model the
degradation effects on the images as a result of approximation,
nor has there been a method that enables the user to select a
specific level of approximation as a tradeoff for an increase in
performance.

This paper presents the design and implementation of a
user-controlled fidelity slider method that allows the user to
control the approximate computing process and to selectively
trade off accuracy for performance improvement. We apply the
slider approach to the Canny edge detector [7]] (referred to as

CED further on in the text), a well-known image processing
algorithm used in many fields ranging from pattern recognition
to computer vision. The approach can however be extended to
other image processing algorithms as well, particularly those
not easily amenable to efficient parallelization due to their
inherent constraints of computational continuity and internal
data dependencies, such as e.g. discrete wavelet transform [8]].

The concept of user-controlled degradation in image quality
has been widely used to enable improvement in the com-
pression ratio of images at the expense of accuracy, in order
to increase the efficiency of storage (rather than processing)
resource utilization [9]. On the other hand, the majority of
image processing approximate computing approaches focus on
automatically adjusting the algorithm accuracy based on the
available computational resources, rather than through user
control [10]-[12].

Among previously published works on parallelization of the
CED, [6] is, to our knowledge, the only one that could be
meaningfully compared with our in terms of the recorded
optimization levels. It reports a speedup of 11 times over
sequential achieved on a 16-core CPU for a 2048x2048 pixels
test image, but lacks, in our view, sufficient scalability analysis
of the presented solution. Furthermore, it doesn’t offer any user-
controlled scheme of tradeoff between performance and quality
of the traced output.

Similarly to the approach used in [6], we improve perfor-
mance of the CED algorithm by using domain decomposition,
a strategy that divides an image into equally-sized segments
of pixel rows of the image (or slices) and processes them
concurrently. Uniquely for our work, the introduced image
inaccuracies are then moderated using the fidelity slider that
controls a number of correction factors to reduce the aggregate
divergence of the parallelized algorithm.

The paper has the following main contributions:

1) we identify three different factors contributing to the error
caused by applying approximate computing methods to the
CED algorithm;

2) we provide a model to quantify the resulting error;

3)we propose the fidelity slider, which allows the user to
control the amount of error tolerated in the resulting image
to enable higher performance for the algorithm.

/* iterate over image slices x/
for (row_ix=0; row_ix<rows; row_ix+=rows_slice) {
#pragma omp task shared(edge_file) if (do_async_tasking)
{
/* call the main filter function to process
* the image slice as a concurrent task */
canny_par (row_ix, rows_slice, cols, image, ...);

}

Fig. 1: The source code fragment implementing the main
image-slicing loop, simplified.

TABLE I: Runtime breakdown by functions in the CED algo-
rithm, percents

aussian_s non_max_s | apply_hys derrivat_x magnit_x
%Gau“ia:‘l (non- (hystere- (Gaus:iar: (rﬁa r:i - follow_edge
N maximum sis edge . H (edge
smooth- suppres thresh derivative tude tracing)
i ’ . o & &
ing) sion) olding) x&y) x&y)
76.7 8.2 44 44 3.8 2.3

The rest of the paper is organized as follows. Section
describes the innovative aspects of our CED parallelization.
The achieved experimental results are discussed in Section
followed by Section [[V] that concludes this paper.

II. PARALLELIZATION OF CANNY EDGE
A. Canny edge detection algorithm

The Canny edge detector, developed by John F. Canny [7]],
is a widely known image processing algorithm, description
of which can be found in many introductory texts on image
processing. Here, we only list the main stages of the algorithm:
1) noise reduction by filtering with a Gaussian-smoothing filter;
2) computing the gradients of an image to highlight regions

with high spatial derivatives;
3)relating the edge gradients to directions that can be traced;
4) tracing valid edges using hysteresis thresholding to eliminate

breaking up of edge contours.

The baseline sequential version that we used for paralleliza-
tion, was the CED implementation by Heath et al. [13]], [[14].
The function and variable names used throughout the text of
this section, as well as included in the Figure [2] and Table [I]
refer to the source code of that implementation.

B. Introduction of the image-slicing loop

The domain decomposition-based strategy we employed to
parallelize the sequential version enforces coarse-grained data
parallelization onto the application through incorporating a top-
level image-slicing loop into its code. In the case of CED
implementation, the slices are equally-sized, contiguous blocks
of pixel rows that are processed concurrently by asynchronous
tasks spawned by a dedicated OpenMP-driven loop (Figure [T)).
The loop has been parallelized with a single #pragma omp task
OpenMP directive, which we chose over the more commonly
used #pragma omp for due to its ability to parallelize non-
canonical loops. To host the image-slicing loop, a separate
function was added at the top of the program’s logic; the
(formerly) main function is called from within the loop to
process a single slice, instead of the whole image, as before.

The slice size, denoted as the rows_slice variable in the
source code fragment, is controlled via a parameter in the

application’s command line that defines number of pixel rows
in each slice. If the parameter is not specified, the slice size
will be calculated as the number of pixel rows divided by the
number of hardware threads supported by the platform.

C. Image-slicing challenges and solutions

Due to the breaks in the computational continuity caused
by the introduced image-slicing loop, the following issues
have been observed in the edge-traced images rendered by the
parallel version:

1) horizontal visual breaks appearing in the image, i.e. blank
single-pixel rows between slices, as a result of broken
continuity in the Gaussian-smoothing stage of the algorithm;

2)areas in the image rendered differently from the reference
output due to the image histogram array no longer computed
globally for the entire image, but computed piece-wise
within each slice;

3)differently traced edges as a result of violating the logic of
the recursive edge-tracing procedure used by the original
code that allowed, in principle, for indefinitely long, con-
tiguous edges traced from one arbitrary pixel in the image
to another arbitrary one.

To address the above-mentioned issues, we implemented the
following additions to our solution.

The parallel code was adjusted such that the image slices in-
cluded extra overlapping pixel rows blending into the neighbors,
in order to mask the visual breaks that resulted from image-
slicing. The thereby introduced vertical overlap size (expressed
in pixel rows) is an integer parameter varying from 1 to
T», Where 7, is derived from o, the input parameter of the
Canny edge algorithm that defines the standard deviation of the
Gaussian-smoothing filter. The vertical overlap size corresponds
to the integer windowsize variable found in the sequential code
of the filter, and is computed as follows:

Te = 2% [25% 0] (1)

For most typical use-cases where o doesn’t exceed 2.0,
the value of 10 pixels calculated for 7, in accordance with
Equation [I] results in a Gaussian-smoothed output identical to
that of the sequential version of the algorithm, while the default
of 4 pixels provides adequate masking effect. This adjustment
fully fixed issue (1), and partially addressed issue (3), with a
performance penalty depending on the overlap size and number
of slices.

For the produced output to be identical to that of the
sequential version, a modification in the parallel code was
necessary that would allow using a single histogram of the
entire image for all concurrent slice tasks. To implement this, a
histogram synchronization scheme was developed, where slice
tasks performed most of the work independently, and only
synchronized with each other briefly (see “histogram sync”
block in Figure2)), to compute and share among themselves the
single global histogram, before proceeding with edge-tracing
within their individual image slices, again concurrently. Based
on its own user-defined parameter, the degree of the cross-slice
histogram synchronization, the scheme (Figure 2) added an
extra degree of control in the accuracy for performance tradeoff
within our solution, and partially solved issue (2) of divergence

slice 1 (an OpenMP task)

canny_par / gaussian_smooth / demivative_x_y / magnitude_x_y / non_max_supp

slice 2

canny_par / gaussian_smooth / demivative_x_y / magnitude_x_y / non_max_supp

slice 3

canny_par / gaussian_smooth / demivative_x_y / magnitude_x_y / non_max_supp

slice 4

canny_par / gaussian_smooth / demivative_x_y / magnitude_x_y / non_max_supp

Fig. 2: OpenMP-based parallelization scheme of the CED, drawn as a simplified case of four asynchronous slice-processing tasks

entering histogram synchronization before the edge-tracing stage.

with the reference output. The complete solution for issue (2)
and (3) could only be found as a part of the fidelity slider design

(Section [[I-E).

D. The fidelity slider: balancing performance and accuracy

In order to fully address issue (2) and (3), a new feature
which we call fidelity slider has been introduced into the solu-
tion. By means of adding elements of approximate computing
in a controlled fashion, it allowed to address the principal
challenges of the CED parallelization in a more fundamental
way.

The first step in implementing the slider is to introduce mea-
surement of the actual binary difference between the parallel
version’s output and that of the sequential one. For this purpose,
we implemented a simple metric expressed as a total sum
of average pixel difference between two images (Equation [2),
which proved a suitable divergence measure for the purposes
of our application, reflecting well the degree of the observable
visual difference, as well as more subtle deviations in rendered
edges (see Figure [6] explained in more detail in Section [[II-C])

The rendering error RE used to calculate the accuracy of
the parallel output is computed as the image distance metric
described above, that is the average pixel difference between
the parallel-produced image p and the sequential image s (both
grayscale, the only type of images the CED works with), and
is defined as

N M |LPij—LSij|
RE(p,s) = D im1 Zj:l 255.0 @)
N« M

where LPij and LS%j are pixel intensity values, and N and
M are the images vertical and horizontal dimensions in pixels.
The corresponding accuracy percentage value is calculated as

AC =100 % (1.0 — RE) 3)
E. The design of the fidelity slider

The fidelity slider is constructed as a composite parameter
driving the strength of the following three factors:

1) the vertical slice overlap size in pixel rows, from 1 to 7.
This is the factor introduced to inhibit issue (1); it is denoted
as Fy in Equations [7] and [§] below;

2) the degree of the cross-slice histogram synchronization, ex-
pressed as the number of slice tasks synchronized before the
algorithm’s edge-tracing phase takes place. This is the factor
(denoted as F5 in Equations [9] and [I0] below) introduced to

inhibit issue (2). This factor progresses from two to all slices
synchronized;

3)number of slices rendered in non-concurrent fashion during
the last edge-tracing stage, progressing from two to all slices.
This is the factor (denoted as F3 in Equations [I1] and [12]
below) introduced to inhibit issue (3).

Each of the Fj, F», and F3 factors moderates its own
component of the aggregate divergence from the reference
image induced by the computational discontinuity issues (1), (2)
and (3), respectively, that result from slicing the image. In the
equations below, we denote these three divergence components
as V1, V5 and V3, correspondingly.

Let integer sv, 1 < sv < 100, be the user-defined slider
value. Let also integer ns, 1 < ns, be the number of image
slices generated by our solution. Given the user-defined slider
value sv and the number of image slices ns, we can express
the expected accuracy AC.,, of the parallel-produced output
as a function of the aggregate divergence Vg4, in accordance
with Equation [3] above:

ACgp(sv,ns,75) = 100 % (1.0 — Vg (sv,ns, 7)) 4)
with V,,, constrained such that
0 < Vag(sv,ns,7,) < 1.0 5)

The aggregate divergence V,, is expressed as a sum of the
three divergence components:

Vag(sv,ns,7,) = Vi(sv,ns, 7,) + Va(sv,ns) + Vz(sv, ns)
(6)
where V1, V5 and V3 are non-negative floating point values
within the same [0, 1.0] interval. Individually, the divergence
components can be expressed as follows.
Vi(sv,ns, 7,) = vai(Fl(sv,Tg)) @)
i=2
where F) is an integer function of the slider value and the
T, parameter calculated as

—1.
Fy(sv,7,) = f”o + 1.0J , ®)
To

T, 1S an integer derivative of o, the input parameter to
the CED algorithm that defines the standard deviation of the
Gaussian-smoothing filter (Equation [I), and vb; (F; (sv, 7,)) is
an image-dependent degree of divergence contributed by each

additional slice due to the discontinuity issue (1). The value of
vb; is moderated by Fj in a manner such that adding a pixel
row to the slice overlap along incrementing the factor Fj results
in a steadily decreasing rendering error.

V5 is expressed as follows:

ns

2.

i=F5(sv+1,ns)

vh;)

Va(sv,ns) =

where F5 is an integer linear function of the number of slices
and the slider value, calculated as

(10)

Fo(sv,ns) = [sv *ns“ ’

10.0

and vh; is an image-dependent degree of divergence con-
tributed by the slices rendered without histogram synchro-
nization (discontinuity issue (2)). Advancing the component’s
individual slider value from 1% to 100% results in more and
more slices using the globally synchronized histogram (as
opposed to their locally computed one) and, correspondingly,
decreasing rendering error component Vs.

The use of the divisor constant 10.0 in Equation [I0] and
the ns upper limit in Equation [9] effectively limit the range
of distinct fidelity slider values that influence the Vo compo-
nent to the [1%, 9%] interval, beyond which the F5, factor’s
value results in 100% synchronization across histogram slices
and, correspondingly, zero V5 component error. Imposing such
limitation allows to achieve significantly higher performance at
a given fidelity value, while keeping accuracy of the output at
a sufficient level, than it would have been possible with the
factor mapped to the full range of fidelity values between 1%
and 100%.

V3 is expressed as follows:

ns

>

i=F3(sv,ns)+1

Va(sv,ns) = (11)

ve;

where Fj is an integer linear function of the number of slices
and the slider value, calculated as

Fy(sv,ns) = {sv * nsw ’

_ 12
100.0 (12)

and ve; is an image-dependent degree of divergence con-
tributed by the non-contiguous edges traced within concurrently
processed slices (discontinuity issue (3)). Advancing the com-
ponent’s individual slider value from 1% to 100% results in
more and more slices jointly edge-traced as a single contiguous
fragment of the input image and, correspondingly, decreasing
rendering error component V3. When the F3 factor’s value
reaches ns (number of slices), all edges are traced within
a single slice identical to the input image, resulting in zero
component error.

The composite fidelity slider is exposed as a numeric com-
mandline parameter to the user. Advancing the slider from the
fastest / least precise value of 1% to the slowest / 100% precise,
results in simultaneous gradual increase of the three F, F» and
F5 factors strength.

2 —Earth, 8000x3000 61 MB e
18 -o-Earth, fidelity 30% (default) s
i; ——Earth, Gaussian smoothing loops only S i
--Wrigley, 13985x11188 149 MB 27T
3 u ThunderCloud, 650x488 0.3 MB .~ s
ﬁ —=House, 3072x2034 7 MB

- -ideal scaling

canny edge command line parameters used: 2.0 0.5 0.5

—sequential
slice size: auto

speedup, times X

& -
A *

M2 '3 "4 s 6 7 '8 9 10 '11 12 '13 14 15 "16 17 '18 19 '20 21 '22 "23 24 25 26 '27 28

OpenMP threads

Fig. 3: Benchmark results for the parallelized CED, as regis-
tered for four test images at the fidelity level of 1% (unless
otherwise noted) with file output disabled. Test platform: Xeon
E5-2697 with 14 cores and 28 hardware threads.

170 B Dell desktop Intel Xeon E5-1650: 6 cores, 12 hw threads
160 0.39s.

[1HPC Intel Xeon E5-2697: 14 cores, 28 hw threads

[1BM server P8 S824: 6 cores, 48 hw threads

0.52s.
20 0.55s.

8 0.83s.
701 0.91s.
60 1.10s.

0.96 s.

max performance, MBps
o
8

1.17s.

1.47 s.

Earth.pgm, 8000x8000 61 MB,
accuracy 99%

Earth.pgm, accuracy 99.3% Earth.pgm, accuracy 100%

Fig. 4: Maximal parallel performance in MBs per second for
the three test platforms at three accuracy levels. Test image:
Earth.pgm, 8000x8000 pixels, 61 MB. The figures atop of
every bar are the shortest runtime in seconds registered for the
platform at each of the three accuracy levels.

III. RESULTS

A. The test and development platforms

In the course of benchmarking our CED implementation,
we used the following three platforms. First, an IBM server
equipped with two 4.2 GHz POWERS CPUs both featuring
six cores each supporting up to eight threads per core, running
Ubuntu kernel v3.16, hereafter called “POWERS”. Second, an
HPC server with two 2.6 GHz Xeon E5-2697 CPUs, each hav-
ing 14 cores supporting two threads per core, running Ubuntu
kernel v3.13, hereafter called “Xeon E5-2697”. And third, a
Dell desktop with a 3.2 GHz Xeon ES5-1650 CPU, having
six cores supporting two threads per core, running Windows
7, hereafter called “Xeon E5-1650”. In all our experiments
on the dual-socket machines, only a single socket was used.
The development platform on the three systems was GCC
compiler v4.8.2, v4.9.1, and v4.8.2, respectively, with OpenMP
v4.0 as the parallelization environment. The images, code and
supplemental material used in this paper are available on the
OSF site [[15]).

—Parallel speedup over sequential, House.pgm

Parallel speedup over sequential, ThunderCloud.pgm

e A --Parallel speedup over sequential, Earth.pgm
default fidelity 30%
“Ney g —-Parallel speedup over sequential, Wrigley.pgm
~ LY
defaut fidelity 30%
i parameters used: 2.00.5 0.5

default fidelity 30% slice size: auto

default fidelity 30%

S ~———

speedup over sequential, times X

99.0 99.1 99.20 99.30 99.40 99.50 99.60 99.70 99.80 99.90 100.0
parallel output accuracy

Fig. 5: Impact of the output accuracy on the parallel speedup,
as recorded on the Xeon E5-2697 for four test images.

B. Recorded speedups

The maximal parallel execution speedup recorded for this
application was 18.66 times over the sequential version, when
processing the test 149 MB 13985x11188 pixel Wrigley image
on the Xeon E5-2697, with fidelity set at 1% (Figure 3). On
the other two evaluation platforms, benchmarking has recorded
the highest speedups of 13.33 times over sequential, for the
POWERS (test image: House, seven MB, 3072x2034 pixels),
and 7.74 times, for the Xeon E5-1650 (test image: Earth, 61
MB, 8000x8000 pixels).

For the majority of the images we tested (twenty in total),
rendering at the 1% fidelity resulted in the accuracy of 98%-
99% of the edge-traced output. The chart in Figure {4| displays
the highest absolute parallel performance in MBs per second
registered for each of the three test platforms at three key
accuracy levels (99%, 99.3% and 100%), with the shortest
runtime in seconds atop of every bar.

C. Fidelity slider benchmarks

In Figure[5] the benchmark produced results for the four most
representative test images are displayed against the vertical
speedup axis, with the accuracy value progressing from 99%
to 100% along the horizontal one. The speedup is the highest
(18.01 times over sequential for our main test image, Earth,
61 MB of 8000x8000 pixel size) at the leftmost position of 99
percent accuracy.

To help in getting an idea of the edge detection rigorousness
that can be expected at the lowest fidelity value of 1%, Figure [¢]
presents variations of a fragment from another our test image,
detail-rich Wrigley, with the original picture shown on the left,
output of the sequential version in the middle, and that of the
parallel one on the right. The difference (which is taking place
along a horizontal row at about 1/3 height of the picture where
a slice break happened), is rather difficult to discover, unless
one is hinted where to look first. The measured accuracy for
this rendering was 98.01%.

At the rightmost slider position of 100%, where the perfor-
mance is the lowest (7.32 times over sequential for Earth), the
image difference is zero. In Figure (3| the range of speedups
recorded for the default slider value 30% — chosen in our CED
implementation for the best combination of speed and quality
— can be seen, represented by the curve marked Earth, fidelity
30% (default).

D. Component analysis of the fidelity slider

Figure [/| details breakdown of the aggregate rendering error
RE (Equation [2) into its V3, V5 and V3 components (Equa-
tions [] through [I2) registered for two test images when edge-
tracing them with a fixed number of slices (12). For each of V7,
V5 and V3, a separate sequence of benchmarks was performed,
with the corresponding Fj, F> and F3 factor’s value varying
from 1% to 100%, and the two counterpart factors values fixed
at their 100% fidelity value. Similarly, Figure [§] illustrates the
impact of the I, F» and F3 factors (Equations 8] [I0]and[T2)) on
the parallel speedup, when varying their individual value and
having the two counterpart factors fixed at their 100% fidelity
value.

The stair-stepped pattern that the curves exhibit in all four
charts in Figures [7] and [§] can be explained by the fact that
by definition the range of values allowed for each of the three
factors is limited by ns, the number of slices the input image
is divided into by the parallelization scheme (twelve, in this
benchmark). Furthermore, the [1%, 9%]-interval limitation im-
posed on the F factor (strength of histogram synchronization,
Equation [T0) explains the dramatic plunge in the rendering
error curves that occurrs between the fidelity values 3% and
7% (Figure [/} Earth), and 5% and 9% (Figure [7], Wrigley),
where strengthening of histogram synchronization across four
additional slices resulted in a quickly improving quality of
the rendering. (Similarly, for the F2-only speedup curves in
both charts in Figure [8] which incur a significant drop at the
same points.) For the Earth image, advancing further rightwards
along the axis, the 30% fidelity value (default) yields the RE
aggregate rendering error of 0.000195 (equivalent to the 99.98%
accuracy), with the corresponding overall speedup of 6.93 times
over sequential.

The two slider benchmark figures allow for at least one
important practical observation: with the Fj factor having
such negligible — although still measurable — influence on the
aggregate accuracy of the parallel output, it should be possible
to achieve substantial performance gains, with only a minor
accuracy penalty, by fully relaxing it and keeping the two other
factors, F} and F5, at their maximum value. This assumption
has been confirmed on the 6-core, 12-hardware thread Xeon E5-
1650 platform, where fixing the histogram synchronization level
at 100% and the slice overlap size at 10 pixels (which is the
maximum 7, value computed for the input o parameter value
2.0), and lowering the edge continuity factor to its minimal
level yielded the overall speedup of 7.24 times over sequential,
when edge-tracing the Earth test image, with the rendering
error measured at only 0.000008. This is compared to 7.74
times and 0.007090, respectively, when rendered at the lowest
fidelity slider value 1%, and compared to 5.10 times and 0.0,
respectively, when rendered at the highest fidelity slider value
100%, with the same number of slices 12.

IV. CONCLUSIONS

In this paper, we demonstrated that a successful application
of coarse-grained parallelization and innovative principles of
approximate computing through incorporating an image-slicing
loop into the CED algorithm allows to achieve highly scalable
optimization without using any dedicated hardware acceleration

ESy

e | [)]

Al sl
N

‘i ﬁ)—]ﬁ-[=

Coodrill ST
N

‘i m,_-[e

Bl e
Tm‘ D e el ol | =1 Y
[L_,__Eﬁf::?_ e ey

Fig. 6: A fragment from the Wrigley image (original picture on the left) demonstrating a minor visual difference between the
sequential program’s traced edge output (middle) and the parallel’s one (right), as rendered at the lowest fidelity value of 1%.

—Rendering error, aggregate
0.018 & BEreE

——Rendering error, V1 only
0.016 -
---Rendering error, V2 only

0.014

5 Rendering error, V3 only
3 0012
[
£
o 001
°
=
o 0.008
0.006 processed image: Wrigley.pgm,
13985x11188 pixels, 149 MB
0.004 slices generated: 12
0.002
0
0 2 4 6 8 10 12 WM ‘16 18 0 2 24 2 28 30 32 ¥ 3% 3B 40
fidelity slider value
0,007
g
o 0006
[
c
‘= 0005
[}
°
S o004

0,003

processed image: Earth.pgm,
8000x8000 pixels, 61 MB

0,002

0,001

fldelltysllder value
Fig. 7: Fidelity slider benchmark 1: breakdown of the aggregate
rendering error into its V1, V2 and V3 components, as recorded
on the Xeon E5-1650 for two test images, Wrigley and Earth.
Only the part of the slider axis before 40% is shown, as the
rendering error converges to zero after that point.

equipment. The tradeoff between the performance and quality
of the output is maintained via the specially-introduced fidelity
slider, yielding speedups varying from 18.66x at the accuracy
level of 99 percent, down to 7.32x at the accuracy level of 100
percent, as recorded for the fastest benchmark.

REFERENCES

[1] L. Renganarayana et al., “Programming with relaxed synchronization,”
in Proc. of the 2012 ACM workshop on Relaxing synchronization for
multicore and manycore scalability. ACM, 2012, pp. 41-50.

[2] M. Rinard, “Parallel synchronization-free approximate data structure

construction,” in The 5th USENIX Workshop on Hot Topics in Parallelism.

USENIX, 2013, pp. 1-9.

S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy trade-

offs with loop perforation,” in Proc. of the 19th ACM SIGSOFT sympo-

sium and the 13th European conf. on Foundations of software engineering.

ACM, 2011, pp. 124-134.

[4] L. H. Lourenco et al., “Efficient implementation of canny edge detection
filter for ITK using CUDA,” in 13th Symp. on Computer Systems. 1EEE,
2012, pp. 33-40.

[5] A. Z. Brethorst et al., “Performance evaluation of canny edge detection
on a tiled multicore architecture,” in Electronic Imaging. International
Society for Optics and Photonics, 2011, pp. 78 720F-78 720F.

[3

—Parallel speedup over sequential, aggregate fidelity

——Parallel speedup over sequential, F1 only

---Parallel speedup over sequential, F2 only

Parallel speedup over sequential, F3 only

slices generated: 12

aceigy

>
P
[
£
£
=
=]
=4
Q
S
g6
&
[
>
o
o
S
el
v
Q
o
3

4 processed image: Wrigley.pgm, 13985x11188 pixels, 149 MB
0 4 '8 '12 '16 20 24 28 32 36 '40_ 44_ ‘48 _'SZ ‘56 60 ‘64 '68 ‘72 ‘76 '80 '84 88 '92 96 ‘100
fidelity slider value

®

/;f

“»"\w’*’f%_v“ﬂ"\ N NNtk o Vo g POV A e Sy

«

processed image: Earth.pgm, 8000x8000 pixels, 61 MB

speedup over sequential, times X
£y

IS

0 ‘4 '8 '12 16 20 ‘24 28 32 36 40 ‘44 48 52 56 '60 '64 68 72 ‘76 '80 '84 88 '92 '96 100
fidelity slider value

Fig. 8: Fidelity slider benchmark 2: individual impact of the
F1, F2 and F3 factors on the parallel speedup when varying
the fidelity slider value, as recorded on the Xeon E5-1650 (6
cores and 12 hardware threads) for two test images, Wrigley
and Earth.

[6] L.B. T. Cheikh et al., “Parallelization strategies of the canny edge detector
for multi-core cpus and many-core gpus,” in IEEE [0th International
Conf. on New Circuits and Systems . 1EEE, 2012, pp. 49-52.

[7] J. Canny, “A computational approach to edge detection,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698,
1986.

[8] I. K. Park et al., “Design and performance evaluation of image processing
algorithms on GPUs,” IEEE Trans. on Parallel and Distributed Systems,
vol. 22, no. 1, pp. 91-104, 2011.

[9] D. Taubman and M. Marcellin, “JPEG2000 Image Compression Funda-
mentals, Standards and Practice,” in Image Compression Fundamentals,
Standards and Practice. Springer Science & Business Media, 2012, vol.
642.

[10] M. Samadi et al., “Paraprox: Pattern-based approximation for data parallel
applications,” in Proc. of the 19th international conf. on Architectural
support for programming languages and operating systems. ACM, 2014,
pp. 35-50.

[11] A. Sampson et al., “ACCEPT: A Programmer-Guided Compiler Frame-
work for Practical Approximate Computing,” University of Washington,
Washington, WA, Tech. Rep., 2014.

[12] J. Ansel et al., “Language and compiler support for autotuning variable-
accuracy algorithms,” in Proc. of the 2011 International Symp. on Code
Generation and Optimization, 2011, pp. 85-96.

[13] M. Heath et al., “Comparison of edge detectors: a methodology and initial
study,” in IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition. 1EEE, 1996, pp. 143-148.

[14] “Edge Detector Comparison,” 1996-2015. [Online]. Available: http:
//marathon.csee.usf.edu/edge/edge_detection.html

[15] “The Canny edge / QuadMC parallelization project,” 2015. [Online].
Available: https://ost.i0/i725h/

http://marathon.csee.usf.edu/edge/edge_detection.html
http://marathon.csee.usf.edu/edge/edge_detection.html
https://osf.io/i725h/

	Introduction
	Parallelization of Canny edge
	Canny edge detection algorithm
	Introduction of the image-slicing loop
	Image-slicing challenges and solutions
	The fidelity slider: balancing performance and accuracy
	The design of the fidelity slider

	Results
	The test and development platforms
	Recorded speedups
	Fidelity slider benchmarks
	Component analysis of the fidelity slider

	Conclusions
	References

