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Abstract— A key enabler of real applications on approximate 
computing systems is the availability of instruments to analyze 
system reliability, early in the design cycle. Accurately 
measuring the impact on system reliability of any change in the 
technology, circuits, microarchitecture and software is most of 
the time a multi-team multi-objective problem and reliability 
must be traded off against other crucial design attributes (or 
objectives) such as power, performance and cost. 
Unfortunately, tools and models for cross-layer reliability 
analysis are still at their early stages compared to other very 
mature design tools and this represents a major issue for 
mainstream applications. This paper presents preliminary 
information on a cross-layer framework built on top of a 
Bayesian model designed to perform component-based 
reliability analysis of complex systems.  
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I.  INTRODUCTION  
It is well known today that aggressive scaling of 

hardware feature sizes followed to improve performance and 
computing capability produces systems that are increasingly 
susceptible to soft errors [1][2]. While this has been 
considered for several years as a severe threat to be mitigated 
by different techniques able to detect and mask soft errors 
[3][4][5][6][7] (which typically incur time or energy 
overhead), some researchers now see this as an opportunity 
to develop tools and techniques that enable applications that 
are inherently tolerant to soft errors to execute on unreliable 
hardware with increased performance and reduced power 
consumption [3][8][9][10][11]. 

Regardless of the approach used to enable applications to 
be executed on unreliable hardware, one of the key elements 
to enable real applications execution on approximate 
computing systems is the availability of instruments to 
analyze the reliability of the system, early in the design time. 
Such tools are important to clearly understand if the loss of 
quality of the generated results due to the unreliable 
hardware is still compatible with the reliability requirements 
of the applications. 

Accurately measuring the impact on system reliability of 
any change in the technology, circuits, microarchitecture and 
software is most of the time a multi-team multi-objective 
problem and reliability must be traded off against other 
crucial design attributes (or objectives) such as power, 
performance and cost. Unfortunately, tools and models for 

cross-layer reliability analysis are still at their early stages 
compared to other very mature design tools and this 
represents a major issue for mainstream applications 
[13][14].   

This paper summarizes a cross-layer framework built on 
top of a Bayesian model designed to perform component-
based reliability analysis of complex systems. The 
framework is developed under the EU FP7 project 
CLERECO (http://www.clereco.eu) whose goal is to enable 
early reliability evaluation of complex systems. 

In component-based system modeling it becames quickly 
evident that the whole system is more than the sum of its 
parts. Each component of the system can affect global 
perceivable properties of the entire system. By carefully 
integrating parameters obtained by the characterization of 
technologies, circuits, microarchitectural components and 
software (including the OS) into a Bayesian model of the 
prospective system, we are capable of evaluating very 
accurately the reliability of the full system.  

It is important to remark that a statistical model itself 
would be useless in real applications without providing the 
instruments to compute its parameters for a specific 
application and a specific computing system. Together with 
the proposed model we have developed a complete 
framework comprising a tool chain able to analyze the most 
important parts of a complex system providing all necessary 
information to realize and validate the proposed reliability 
assessment model. 

II. SYSTEM LEVEL RELIABILITY MODEL 
In this paper we focus on errors caused by defects at the 

low-level technology layer of a system due to effects such as 
process variations, radiation, aging, etc. [15]. Errors resulting 
from low-level faults may manifest, be masked or be 
propagated through all Hardware (HW) and Software (SW) 
layers of the system stack eventually resulting in partial or 
total failure of the system activities (Figure 1. ).  

To support reliability analysis of complex systems we 
use a component-based (CB) reliability model [16]. In CB 
reliability, the reliability of a system is estimated using 
reliability information and other properties (e.g., size, 
complexity, etc.) of its individual components and their 
interconnections (the system architecture). Reliability 
estimation is performed early in the design cycle before the 
full system design takes place. This in turn supports 
architectural decisions about component characteristics and 
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gives indications about those components that are critical and 
deserve customized development efforts.  
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Figure 1.  System stack – faults originate at the lower level of the system 

stack and are either masked or propagated to the upper layer eventually 
resulting in a failure at system level. 

Figure 3. shows the architecture of the proposed 
reliability analysis framework. Our model exploits Bayesian 
Networks (BNs) as a statistical foundation for full system 
reliability estimation. Some of the reasons that lead to the 
use of BNs for system reliability modeling are:  
• their efficient calculation scheme,  

• intuitive representation of all system components,  

• capability of fitting on field data,  

• compact representation and decision support.  

Our component-based BN model of a system includes a 
qualitative model represented by the network itself that 
models the architecture of the system and a quantitative 
model, representing the parameters of each component and 
their relations (modeled as a set of Conditional Probability 
Tables – CPT). 

The nodes of the network correspond to the components 
of the system whose reliability is associated to a set of 
random variables, while arcs define temporal or physical 
relations among components, e.g., a failure state of a 
component may influence the state of other components. 

Nodes are grouped in different domains:  
• Technology domain: it models the physical technological 

layer of the system. 

• Hardware domain: it models the hardware architecture. It 
comprises hardware blocks such as CPUs, GPUs, 
memories, accelerators, custom IP cores, etc. Granularity 
at which hardware blocks are modeled in this domain 
depends on the level of details the designer needs to 
obtain from the reliability analysis, and on the degree of 
freedom the designer has with the design of selected 
components. 

• Software domain: This domain models the software 
architecture. To decouple the analysis of the software 
domain from the hardware domain special attention is 
required to define the interface between the two layers. A 
set of special nodes denoted as Software Fault Models 

(SFMs) translate hardware failures into the software 
domain and therefore decouple the hardware domain 
from the software domain so that the corresponding 
supporting tools can operate in parallel. SFMs are mainly 
based on alterations (due to faults) that have an impact on 
the Instruction Set Architecture (ISA) of the 
microprocessor. 

• System domain. It is the higher-level domain of the 
system. Nodes in this domain are basically output nodes 
of the system, i.e., nodes in which a fault can be observed 
as a failure of the system. 

Every domain has a dedicated set of tools for the 
characterization of its components. 

In the technology domain we have developed a 
framework built on top of the HSPICE simulator able to 
characterize the main building blocks composing any logic 
circuit and to compute their marginal fault probability with 
respect to a given failure mode. The considered blocks 
include sequential blocks (i.e., memory cells, flip-flops and 
latches), as well as combinatorial blocks (i.e., logic gates). 
Each block is analyzed for different run-time parameters 
(i.e., combinations of voltage, temperature and geographical 
location). So far our technology library comprises: Bulk 
Planar CMOS 22nm and 16nm, Bulk Fin FET 20nm and 
14nm, SOI Planar 22nm [17]. 

At the hardware domain we focused our effort on the 
development of a tool-chain able to characterize the different 
microarchitectural blocks of any microprocessor. 
Microprocessors are our main target since they represent one 
of the most complex and important blocks of a system. In 
order to estimate accurately the reliability of the hardware 
layer we resort to a microarchitecture-level fault injection, 
which delivers very accurate results for array-based 
structures.  Two tools built on top of the well-known Gem5 
and Marssx86 simulators have been developed to enable 
characterization of both x86 and ARM architectures [18]. 

At the software layer, to enable software characterization 
in isolation from the target platform, we resort to LLVM 
(Low Level Virtual Machine), a compiler framework that 
uses virtualization with virtual instruction sets to perform 
complex analysis of the software applications. We built a 
high-level software fault injection framework able to inject 
software fault models within an application and observe its 
effect on the software outcome. 

At the system level contributions from all tools are 
combined into a BN model of the system that is used to 
reason about the overall reliability properties of the system. 
Both Diagnostic reasoning from symptoms to cause, and 
predictive reasoning starting from the information about 
causes (i.e., raw technology failure rates) to new beliefs 
about effects is supported. 

By resorting to this high-level statistical reasoning, 
system designers are provided with a tool enabling to 
perform early estimation of the overall system reliability and 
to analyze the effect hardware unreliability has on the quality 
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of the system’s results. Moreover, using diagnostic 
reasoning, weak components can be probabilistically 
identified. This provides means to drive the reliability design 
effort toward the most critical components of the system thus 
optimizing the overall system.  

III. EXPERIMENTAL RESULTS 
In order to give a preliminary insight of the capability of 

the proposed framework we propose here its application to 
the analysis of an x86 based system running a single 
application. 

The hardware architecture of the system is summarized 
in TABLE I. The system is based on an x86 out-of-order 
microprocessor built with a 22nm Bulk Planar technology 
(ASU PTM Models). We assume the RAM is protected by 
ECC and the analysis focuses on faults in the microprocessor 
structures. 

TABLE I.  HARDFWARE ARCHITECTURE 

x86 out-of-order-model 
Component Size Technology 

Register file (256 regs each 64-
bits) 2KB 22nm Bulk 

Planar 

L1 Instruction Cache 32KB 
22nm Bulk 
Planar (8T 

SRAM) 

L1 Data Cache 32KB 
22nm Bulk 
Planar (8T 

SRAM) 

L2 Cache 1 MB 
22nm Bulk 
Planar (6T 

SRAM) 

Load/Store Queue 128 
bytes 

22nm Bulk 
Planar 

Main memory 

DRAM protected with ECC (i.e., no fault injected) 

 
The system executes the string search application from 

MiBench1. 
We analyzed the system first through a complete fault 

injection campaign resorting to the GeFIN fault injector [18]. 
We resorted to statistical fault sampling as described in [19] 
to compute the number of faults (single bit flips) to inject. 
For all the hardware structures of our study, the number of 
fault injection runs was set to 2000, which corresponds to 
2.88% error margin and 99% confidence level. For each 
injection the full application has been simulated and results 
classified into one of the following classes: benign, silent 
data corruption, unresponsive. 

The same analysis has been performed resorting to our 
reliability analysis 

                                                             
1 http://wwweb.eecs.umich.edu/mibench/) 

framework.

 
 

Figure 2.  Failure in time (FIT) for the considered system computed using 
the CLERECO reliability framework and full fault injection campaign. 

Figure 2. compares the result in terms of accuracy of the 
computed reliability. Results obtained with the fault injection 
have been de-rated using the error probability for the target 
technology available in our technology library. The figure 
clearly show the accuracy of the framework compared to a 
full fault injection campaign. Interestingly, computation time 
is reduced of about one order of magnitude, with significant 
benefits for the system designers. 

IV. CONCLUSIONS 
This paper presents preliminary results on the 

development of a cross-layer framework built on top of a 
Bayesian model designed to perform component-based 
reliability analysis of complex systems.  

The framework enables very accurate analysis of the 
reliability of a system with significant reduction on the 
simulation time. It therefore represents an interesting 
instrument for system designer that need to trade off 
reliability of their systems with other parameters such as 
performance and power. 
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Figure 3.  The CLERECO Reliability Analizer Framework. 


