
1

Early Component-Based System Reliability Analysis
for Approximate Computing Systems

A.Vallero, A.Savino,

G.Politano, S.Di Carlo
 Politecnico di Torino

Torino, Italy

A.Chatzidimitriou,
S.Tselonis, M.Kaliorakis,

D.Gizopoulos,
University of Athens

Athens, Greece

M.Riera, R.Canal,
A.Gonzalez

Universitat Politècnica de
Catalunya

Barcelona, Spain

M.Kooli, A.Bosio,
G.Di Natale

LIRMM, Montpellier
Montpellier, France

Abstract— A key enabler of real applications on approximate
computing systems is the availability of instruments to analyze
system reliability, early in the design cycle. Accurately
measuring the impact on system reliability of any change in the
technology, circuits, microarchitecture and software is most of
the time a multi-team multi-objective problem and reliability
must be traded off against other crucial design attributes (or
objectives) such as power, performance and cost.
Unfortunately, tools and models for cross-layer reliability
analysis are still at their early stages compared to other very
mature design tools and this represents a major issue for
mainstream applications. This paper presents preliminary
information on a cross-layer framework built on top of a
Bayesian model designed to perform component-based
reliability analysis of complex systems.

Keywords-component; reliability analys; cross-layer

I. INTRODUCTION
It is well known today that aggressive scaling of

hardware feature sizes followed to improve performance and
computing capability produces systems that are increasingly
susceptible to soft errors [1][2]. While this has been
considered for several years as a severe threat to be mitigated
by different techniques able to detect and mask soft errors
[3][4][5][6][7] (which typically incur time or energy
overhead), some researchers now see this as an opportunity
to develop tools and techniques that enable applications that
are inherently tolerant to soft errors to execute on unreliable
hardware with increased performance and reduced power
consumption [3][8][9][10][11].

Regardless of the approach used to enable applications to
be executed on unreliable hardware, one of the key elements
to enable real applications execution on approximate
computing systems is the availability of instruments to
analyze the reliability of the system, early in the design time.
Such tools are important to clearly understand if the loss of
quality of the generated results due to the unreliable
hardware is still compatible with the reliability requirements
of the applications.

Accurately measuring the impact on system reliability of
any change in the technology, circuits, microarchitecture and
software is most of the time a multi-team multi-objective
problem and reliability must be traded off against other
crucial design attributes (or objectives) such as power,
performance and cost. Unfortunately, tools and models for

cross-layer reliability analysis are still at their early stages
compared to other very mature design tools and this
represents a major issue for mainstream applications
[13][14].

This paper summarizes a cross-layer framework built on
top of a Bayesian model designed to perform component-
based reliability analysis of complex systems. The
framework is developed under the EU FP7 project
CLERECO (http://www.clereco.eu) whose goal is to enable
early reliability evaluation of complex systems.

In component-based system modeling it becames quickly
evident that the whole system is more than the sum of its
parts. Each component of the system can affect global
perceivable properties of the entire system. By carefully
integrating parameters obtained by the characterization of
technologies, circuits, microarchitectural components and
software (including the OS) into a Bayesian model of the
prospective system, we are capable of evaluating very
accurately the reliability of the full system.

It is important to remark that a statistical model itself
would be useless in real applications without providing the
instruments to compute its parameters for a specific
application and a specific computing system. Together with
the proposed model we have developed a complete
framework comprising a tool chain able to analyze the most
important parts of a complex system providing all necessary
information to realize and validate the proposed reliability
assessment model.

II. SYSTEM LEVEL RELIABILITY MODEL
In this paper we focus on errors caused by defects at the

low-level technology layer of a system due to effects such as
process variations, radiation, aging, etc. [15]. Errors resulting
from low-level faults may manifest, be masked or be
propagated through all Hardware (HW) and Software (SW)
layers of the system stack eventually resulting in partial or
total failure of the system activities (Figure 1.).

To support reliability analysis of complex systems we
use a component-based (CB) reliability model [16]. In CB
reliability, the reliability of a system is estimated using
reliability information and other properties (e.g., size,
complexity, etc.) of its individual components and their
interconnections (the system architecture). Reliability
estimation is performed early in the design cycle before the
full system design takes place. This in turn supports
architectural decisions about component characteristics and

2

gives indications about those components that are critical and
deserve customized development efforts.

Technology

Radiations
TemperatureAging

Crosstalk Process variation

…

Hardware	architecture	(HW)

Software	architecture	(SW)

System

Physical sources
of defects

Faults modeling
phisical defects
(e.g., single event
upset, stuck-at
faults)

Errors

Failures
Masking/
Propagation

Masking/
Propagation

Masking/
Propagation

Figure 1. System stack – faults originate at the lower level of the system

stack and are either masked or propagated to the upper layer eventually
resulting in a failure at system level.

Figure 3. shows the architecture of the proposed
reliability analysis framework. Our model exploits Bayesian
Networks (BNs) as a statistical foundation for full system
reliability estimation. Some of the reasons that lead to the
use of BNs for system reliability modeling are:
• their efficient calculation scheme,

• intuitive representation of all system components,

• capability of fitting on field data,

• compact representation and decision support.

Our component-based BN model of a system includes a
qualitative model represented by the network itself that
models the architecture of the system and a quantitative
model, representing the parameters of each component and
their relations (modeled as a set of Conditional Probability
Tables – CPT).

The nodes of the network correspond to the components
of the system whose reliability is associated to a set of
random variables, while arcs define temporal or physical
relations among components, e.g., a failure state of a
component may influence the state of other components.

Nodes are grouped in different domains:
• Technology domain: it models the physical technological

layer of the system.

• Hardware domain: it models the hardware architecture. It
comprises hardware blocks such as CPUs, GPUs,
memories, accelerators, custom IP cores, etc. Granularity
at which hardware blocks are modeled in this domain
depends on the level of details the designer needs to
obtain from the reliability analysis, and on the degree of
freedom the designer has with the design of selected
components.

• Software domain: This domain models the software
architecture. To decouple the analysis of the software
domain from the hardware domain special attention is
required to define the interface between the two layers. A
set of special nodes denoted as Software Fault Models

(SFMs) translate hardware failures into the software
domain and therefore decouple the hardware domain
from the software domain so that the corresponding
supporting tools can operate in parallel. SFMs are mainly
based on alterations (due to faults) that have an impact on
the Instruction Set Architecture (ISA) of the
microprocessor.

• System domain. It is the higher-level domain of the
system. Nodes in this domain are basically output nodes
of the system, i.e., nodes in which a fault can be observed
as a failure of the system.

Every domain has a dedicated set of tools for the
characterization of its components.

In the technology domain we have developed a
framework built on top of the HSPICE simulator able to
characterize the main building blocks composing any logic
circuit and to compute their marginal fault probability with
respect to a given failure mode. The considered blocks
include sequential blocks (i.e., memory cells, flip-flops and
latches), as well as combinatorial blocks (i.e., logic gates).
Each block is analyzed for different run-time parameters
(i.e., combinations of voltage, temperature and geographical
location). So far our technology library comprises: Bulk
Planar CMOS 22nm and 16nm, Bulk Fin FET 20nm and
14nm, SOI Planar 22nm [17].

At the hardware domain we focused our effort on the
development of a tool-chain able to characterize the different
microarchitectural blocks of any microprocessor.
Microprocessors are our main target since they represent one
of the most complex and important blocks of a system. In
order to estimate accurately the reliability of the hardware
layer we resort to a microarchitecture-level fault injection,
which delivers very accurate results for array-based
structures. Two tools built on top of the well-known Gem5
and Marssx86 simulators have been developed to enable
characterization of both x86 and ARM architectures [18].

At the software layer, to enable software characterization
in isolation from the target platform, we resort to LLVM
(Low Level Virtual Machine), a compiler framework that
uses virtualization with virtual instruction sets to perform
complex analysis of the software applications. We built a
high-level software fault injection framework able to inject
software fault models within an application and observe its
effect on the software outcome.

At the system level contributions from all tools are
combined into a BN model of the system that is used to
reason about the overall reliability properties of the system.
Both Diagnostic reasoning from symptoms to cause, and
predictive reasoning starting from the information about
causes (i.e., raw technology failure rates) to new beliefs
about effects is supported.

By resorting to this high-level statistical reasoning,
system designers are provided with a tool enabling to
perform early estimation of the overall system reliability and
to analyze the effect hardware unreliability has on the quality

3

of the system’s results. Moreover, using diagnostic
reasoning, weak components can be probabilistically
identified. This provides means to drive the reliability design
effort toward the most critical components of the system thus
optimizing the overall system.

III. EXPERIMENTAL RESULTS
In order to give a preliminary insight of the capability of

the proposed framework we propose here its application to
the analysis of an x86 based system running a single
application.

The hardware architecture of the system is summarized
in TABLE I. The system is based on an x86 out-of-order
microprocessor built with a 22nm Bulk Planar technology
(ASU PTM Models). We assume the RAM is protected by
ECC and the analysis focuses on faults in the microprocessor
structures.

TABLE I. HARDFWARE ARCHITECTURE

x86 out-of-order-model
Component Size Technology

Register file (256 regs each 64-
bits) 2KB 22nm Bulk

Planar

L1 Instruction Cache 32KB
22nm Bulk
Planar (8T

SRAM)

L1 Data Cache 32KB
22nm Bulk
Planar (8T

SRAM)

L2 Cache 1 MB
22nm Bulk
Planar (6T

SRAM)

Load/Store Queue 128
bytes

22nm Bulk
Planar

Main memory

DRAM protected with ECC (i.e., no fault injected)

The system executes the string search application from

MiBench1.
We analyzed the system first through a complete fault

injection campaign resorting to the GeFIN fault injector [18].
We resorted to statistical fault sampling as described in [19]
to compute the number of faults (single bit flips) to inject.
For all the hardware structures of our study, the number of
fault injection runs was set to 2000, which corresponds to
2.88% error margin and 99% confidence level. For each
injection the full application has been simulated and results
classified into one of the following classes: benign, silent
data corruption, unresponsive.

The same analysis has been performed resorting to our
reliability analysis

1 http://wwweb.eecs.umich.edu/mibench/)

framework.

Figure 2. Failure in time (FIT) for the considered system computed using
the CLERECO reliability framework and full fault injection campaign.

Figure 2. compares the result in terms of accuracy of the
computed reliability. Results obtained with the fault injection
have been de-rated using the error probability for the target
technology available in our technology library. The figure
clearly show the accuracy of the framework compared to a
full fault injection campaign. Interestingly, computation time
is reduced of about one order of magnitude, with significant
benefits for the system designers.

IV. CONCLUSIONS
This paper presents preliminary results on the

development of a cross-layer framework built on top of a
Bayesian model designed to perform component-based
reliability analysis of complex systems.

The framework enables very accurate analysis of the
reliability of a system with significant reduction on the
simulation time. It therefore represents an interesting
instrument for system designer that need to trade off
reliability of their systems with other parameters such as
performance and power.

ACKNOWLEDGMENT
This paper has been fully supported by the 7th Framework
Program of the European Union through the CLERECO
Project, under Grant Agreement 611404.

REFERENCES

[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir.
Toward exascale resilience. International Journal of High
Performance

[2] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi.
Modeling the effect of technology trends on the soft error rate of
combinational logic. DSN, 2002.

[3] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: an
architectural framework for software recovery of hardware faults.
ISCA ’10.

[4] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D.
Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. MICRO, 2003.

4

[5] F. Perry, L. Mackey, G.A. Reis, J. Ligatti, D.I. August, and D.
Walker. Fault-tolerant typed assembly language. PLDI, 2007.

[6] J. Ray, J. Hoe, and B. Falsafi. Dual use of superscalar datapath for
transient-fault detection and recovery. MICRO, 2001.

[7] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August. Swift:
Software implemented fault tolerance. CGO 05, 2005.

[8] M. Carbin and M. Rinard. Automatically identifying critical input
regions and code in applications. ISSTA, 2010.

[9] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. ICSE, 2010.

[10] M. Rinard. Probabilistic accuracy bounds for fault-tolerant
computations that discard tasks. ICS, 2006.

[11] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. Enerj: Approximate data types for safe and general
low-power computation. PLDI, 2011.

[12] D.W. Coit, J. Tongdan, N. Wattanapongsakorn, "System optimization with
component reliability estimation uncertainty: a multi-criteria approach," in
Reliability, IEEE Transactions on , vol.53, no.3, pp.369-380, Sept. 2004 doi:
10.1109/TR.2004.833312

[13] A.Evans, M.Nicolaidis, S.-J.Wen, D.Alexandrescu, and E.Costenaro, “RIIF -
reliability information interchange format,” in On-Line Testing Symposium
(IOLTS), 2012 IEEE 18th International, June 2012, pp. 103– 108.

[14] U.Schlichtmann, V.Kleeberger, J.Abraham, A.Evans, C.Gimmler- Dumon,
M.Glas, A.Herkersdorf, S.Nassif, and N.Wehn, “Connecting different worlds -
technology abstraction for reliability-aware design and test,” in Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2014,
March 2014, pp. 1–8.

[15] T.Austin, V.Bertacco, S.Mahlke, and Y.Cao. “Reliable Systems on Unreliable
Fabrics” IEEE Design & Test of Computers, 25(4): 322-333, July 2008.

[16] A. Filieri, C. Ghezzi, V. Grassi, R. Mirandola, Reliability analysis of
component-based systems with multiple failure modes. In Component-Based
Software Engineering (Springer), pp. 11-20, 2010.

[17] S. Ozdemir, N. Aymerich, M. Riera, R. Canal, A. González, M. Kaliorakis, S.
Tselonis, N. Foutris, D. Gizopoulos, A. Benso, S. Di Carlo, “Characterization
of failure mechanisms for fu- ture systems (preliminary)” [on-line]
http://www.clereco.eu/images/deliverables/D2.2.1-characterizaion-of-failure-
mechanisms_v1.4_final.pdf

[18] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, and D.Gizopoulos, “Differential
Faut Injection on Microarchitectural Simulators”, in IEEE International
Symposium on Workload Characterization (IISWC), Oct. 2015

[19] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical fault injection:
Quantified error and confidence”, DATE 2009.

Figure 3. The CLERECO Reliability Analizer Framework.

