11314 Silicon

i
A
“““““““ /,, Y
\\\\\\\\\\ 7 ,4‘,;,";;:‘ el
\\\\\ i 4
| (Y
i
i i
i 1
) B
! i
il h[\ i
I ‘
Il .
il | '
y
4
é I")

J y f / i\
/) 1l | ‘) A\
/ \ \ \\\
/ / \ \
g / \}‘ ‘l l\. \\I\‘\\‘
, L
il I
{1
/ ”“ \\‘
/) “‘“
i\
1
\ OARN
| \ | I\\'\ l\\
\‘ ‘ ‘
il 1
Iy |
i AALERRELRRANNNS
il I AN \\ LEARARAY i
I\ AAARARRN | ,
| [} i \\\\\‘ A | ! A\
4 it Iy ‘ i\ A

ARTRNARARY ‘
‘ DANEINY (|
g Wil ,
I \ At e —— e \
. " & ‘

J edrgios Keramidas
: | January 2015

sl ' ‘v\
.
&

Title: Clumsy Value Cache: An Approximate
Memoization Technique for Mobile
GPU Fragment Shaders

By: Georgios Keramidas, Chrysa Kokkala, and lakovos Stamoulis

NUGPU &

An EU-funded research project into low power GPU technology

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 1

Ultra Low Power GPUs for Wesa

KHRCONOS

Who are we? eRoOUF

EEEEEEEEEEEEEEEEEEEEEEEEEEE

— Think Silicon is a privately held company founded in 2007

What we do?

— Design and Develop low power GPU IP semiconductor cores
for mobile/embedded devices

Market

— Focus is the broader loT and specifically the “Wearable”
market

e QOur mission

— Support and collaborate with our customers to create mutual
and enduring values in each phase of the project

QEE

0\
OpenWF OpenVG. @GL\ES -':) p en‘C?P OpenVX

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 2

Moore’s Law in Mobile GP

Ll

= -=GPU performance

J

3 ==GPU Power

9 —=Display Resolution

martphon
10 years 5 years NOW in 5 in 10 Sma phone
ago ago years years GPUs

Applications = in next 5 years will need 4-5x the current GPU perf.
Display resolution—> exponential increase (4K displays are here)
BUT... Power=> roughly under the same power budget (few hundreds milliwatts)

loT GPUs: few mWatts (< 3 mW) are devoted to graphics
New smart low power techniques must be found

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 3

Evolution in Graphics

Many areas with the
same or almost the
same colours

Pixels with same

colours = same

calculations with
same inputs ?

* If YES = we can reduce power by simply “remembering” the
results from previous calculations

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 4

 Value Memoization or Value Reuse or Work Reuse or
Value Cache

* Pros: Simple design = a memory array + some logic

Source I N | N Output
RGBAs 4 FP MULs fp=——p{ 4 FP ADDs RGBAs
]

Source

: Output
_’ -
ROBAS Input-output (pairs) —p RGBAs

Input-output (pairs)

Value Cache
(for each color)

* For each new pixel, first the Value Cache is checked using input colours

* Match (value cache hit) = one local memory access, 8 less costly
computations

¢ Mismatch (value cache miss) = two local memory accesses (VC
lookup + VC update) = extra power in the system

Jan 2015 Georgios Keramidas / Think Silicon Ltd. 5

Bad news: Value memoization is not able to pay off

Corbal et al. Fuzzy memoization for floating point multimedia
applications

Citron et al. Look It
Analysis of Instruction Re

Huang et al. Exploiting Basj
Richardson et al. Explg#
Bodik et al. Chargeferizing coarse-graine
Sodani et al. Dynamic Instruction Reuse

: An Energy, Area, and Timing
emoization

Value Locality with Block Reuse
edundant Computation
use of computation

Reasons:

— Very large reuse tables required
— Redundancy or value reuses are limited
— In CPU-like code, not enough number of blocks of (costly) instructions

 What about graphics?

— Graphics apps and GPU architectures are promising?

25-Mar-14

Georgios Keramidas / Think Silicon Ltd.

Memoization in Graphics ??2?

Graphics applications ??? YES

— Computer generated images = do have areas with
similar colors

— Value caching will be beneficial

Jan 2015 Georgios Keramidas / Think Silicon Ltd. 7

Memoization in Graphics ??2?

GPU architecture ??? Definitely YES

1.

GPU code: data flow-like with a
small number of registers per thread

GPU code: limited number of input
registers, always one output register

GPU code: not conditional code (in
most of the cases)

GPU code: typically 128 bits

GPU code: power hungry
instructions e.g., log, rsq, or ex2

GPU code: many constant variables

* No need to “remember”
constants

Jan 2015 Georgios Keramidas / Think Silicon Ltd.

0x0060:
0x0070:
0x0080:
0x0090:
0x00a0:
0x00b0:
0x00c0:
0x00d0:

mad rl.xyz, rl, c0, -cl
dp3 rl.w, 112, il2

ex2 rl.x, rl.x

rsq r0.w, rl.w

mul rd.xyz, r0.w, i12
mad r0.xyz, r0, c0, -cl
dp3 r0.w, rl, 0

mov ol, r0

A typical GLSL
fragment shader

Value Cache Hits (%)

100% -
90% -
80% -
70% -
60% -

50%

40%

30%

20% -
10% -
0% -

Average (0-bits):
* 12,96% 8-entries
* 14,21%, 32 entries

8 32‘ 8 32‘ 8 32‘

8 32 8 |32 8 32‘ 8‘32‘ 8‘32‘

8 |32
MUL ADD MAD DP3 SGE EX2 LG2 RSQ TEX
vector scalar

Evaluation of Redundancy & Value Cache in all GPU
instructions

— Result 1: Value cache performance differs among the
instructions depending on instruction type (scalar or
vector and input registers)

— Result 2: Redundancy is limited = only 14% on average in
a 32 entries Value Cache

Jan 2015 Georgios Keramidas / Think Silicon Ltd. 9

Value Cache Hits (%)

100% -
90% -
80%

8 32‘ |a 32‘ |a 32‘

70%
60%
50%
40%
30%
20%
10%

0% -

Vic

Average (0-bits):
12,96% 8-entries

* 14,21%, 32 entries

Average (8-bits):

* 16,04%, 32 entries
8

832

o 32‘ 32‘ s |32 Average (16-bits):

MUL TEX * 40,62%, 32 entries
vector scalar Average (20-bits):

M 0-bits m 8-bits m 16-bits M 20-bits (ignored) . 75,95%, 32 entries

Reduced Accuracy: from full VC matches to
partial matches (partial matches: dynamically
reduce the bits of mantissa)

— Result: VC hit ratio increases exponentially 2>
“accuracy” is the only viable way

Jan 2015 Georgios Keramidas / Think Silicon Ltd. 10

Value Cache in Instruction Grg

20% -
18% -
16% -
12% -
12% -
10% -
8%
6%
4% -
2%
0%

Value Cache Hits (%)

2-instr. block 3-instr. block 5-instr. block 7-instr. block
instructions per block-size

H32 m128 w256 w512 mi1K wm2K w4K w8K - 16K wm 32K-entriesVC

e Evaluation of Value cache with full matches
(Redundancy) in large memoization tables

— Result: Redundancy cannot be captured with
(unrealistically) large tables in groups of instructions

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 11

What about Image Qualit

* Not all instructions must be equally precise

— Result 1: Texture fetches in high precision

— Result 2: Calculations in low precision
More details can be found in the paper

Precision is reduced
in all instructions

Impact of Reduced Precision in Image Quality

207 Precision is reduced
| || | | | | only in arithmetic
Al | No No , instructions

Instr. | Text. Instr. | Text. Instr. | Text. Instr. | Text.

fetches fetches (fetchg (texture fetches in

Quake_4 Doom_3 Prey_Guru_d uT_2004 F U LL p re CiSi on)
[4-bits M 8-bits [12-bits M 16-bits [20-bits (ignored)

Al

* Precision reduction in all instructions = NO more than 4-bits can be
ignored during partial matches

* Precision reduction ONLY in arithmetic instructions = up to 16 bits
can be ignored during partial matches

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 12

* VCinstructions
— AddEntries places new results in the VC in misses
— LookupEntries retrieves from VC, in hits, or produces misses

* Putting all together = Compiler (LLVM)-level Methodology to
automatically identify VC blocks in OpenGL fragment shaders

// Fragment program 4- Quake 4

‘:}'i:l':‘:‘:: tex rO0.yzw, 17, tl // Tex instructions. Ignored. MEthOdOIOgy (In a nUtSheII)

0x0010: ctex rl.xyz, i6, t0

0x0020: txp r2.xyz, i8, t2 °

0x0030: tex r3.xyz, ill, t5 PY T y t f d th I g t d
0x0040: dp3 r0.w, il2, il2 // contribute to texture coordinates r O In e ar es co e

OxONS0D

)050: mad r5, r0, c2.x, c2.y // output: r5. Ignored.

‘xﬁ:mad-rlrjzrlcucl /4/do not contribute to Segments (Vc bIOCkS) EXCIUding

dp3 rl.w, 112, il12 / texture coordinates
r0 : ° °

73 T, Tl i VC BLOCK 1 (7 instr.) texture fetch instructions or

mul r4.xyz, rO0.w, il2

mad r0.xyz, r0, c0, -cj}

dp3 r0.w, rl, r0

joxg0co: ep x0 w i, g § o 0 instructions than contribute to

0x0040: mul rl.xyz, r0.w,/r2 // block of 1 instruction. Ignored.

i e o texture fetches

< - [] [] []
B LAY 1 R * Reasoning: in this way, the
mad r0.w, r0.w, c3, —c4i¥rrrrereseea, VC BLOCK 2 (5 instr.)

0: mul rO.w, r0.w, r0o.w H

o precision of the VC block can

0x0160: mad rO0.xyz, r0, r3, r2 // block of 1 instruction. Ignored. .
E'C')'('J':':"T':""rz'n'z'l'"r'o'.')'(:;z","ﬁ',";d ". VC BLOCK 3 (2 instr.) be aggrESSIVEIy rEd uced
jmoio: wa oy s S35 W/, dl. eutpciol

En

»d of Fragment program (increaSing VC hitS)

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 13

Quake_4

Doom_3 54 55
Prey_Guru_4 54 55
UT_2004 64 72

Saved Instructions (%)

54
55
73

Average code coverage: 58.7%

VC block selection
methodology = 58.7% of
fragment shaders code
encapsulated in VC blocks

* Dynamic Value Cache = Run-time, feedback-directed mechanism to
control the interplay between precision reduction and QoS

maximizing the value reuse benefits at the same time
More details can be found in the paper e 13.5% reduction in

Reduction in Executed Instructions
30

25

20

15
10
1 1 11
0

3
Qua¥e- Doo"“-— e.uN-— gt 10“ a...erﬂ%"

i Dynamic Value Cache Mechanism

Jan. 2015

Reduction in Image Qualiy executEd

[
ﬂ_\la‘ﬁe' Donﬁ\ a' G\l\"""

0.9 instructions

0:93 >60% hits in value
% 0,97 cache

0,96 | I 0.8% image quality

0,95 loss

uﬂ’*““ﬂ' aer®®

o Dynamlc Value Cache Mechanism
Georgios Keramidas / Think Silicon Ltd. 14

Practical Issues

e Value Cache in silicon (in 2 company’s products)

— VC as an extra specialized functional unit in
GPU data path

— VCFU managed by machine instructions
visible to GPU compiler/assembler

— Extension of GPU ISA
— VCinstructions as LLVM intrinsic instructions
— Insertion methodology implemented in the

PROGRAM
COUNTER

instruction
fetch
instruction
decode

integer
unit

LLVM IR
100%:
95% Simulation results ==

50% FPGA results

85%
80%
3]
70%

T — “)
% water_shader ve.s = (C..TATIONS\WC_DEMO) -'G\nﬁ_

‘| File Edit Tools Syntax Buffers Window Help

alill@@mnualaﬁalééal?@a

1d_qf ui3, v3.x, @

Value Cache Hits (%)

1_vcache3 vi3, vi3, vie, vi2, $BEO 3
lookup value cache assembly instruction
add.vhd w16, w12, vi@

80x80 120%x120 fset ulh, 1856964608
madd.ub v13, vis, vib, -u13
32 threads u_ucache v13

i update value cache assembly instruction

B d-entries W B-entries W 16-entries SBBO 3:

st_qf w13, v3.x, @

M 32-entries M 64-entries W 128-entries
Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 15

e Contribution: Value Cache mechanism

* Target: Remove redundant, complex arithmetic
operations in OpenGL graphics applications

e VC strongly relies on the concept of approximate
computing by reducing the accuracy of the value
memoization comparisons in a dynamic fashion

— Without using approximate computing techniques
meager or negative benefits observed

* Overall: 13.5% reduction in executing instructions in
modern fragment shaders with a negligible loss in the
quality of the rendered images

Jan. 2015 Georgios Keramidas / Think Silicon Ltd. 16

