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• Who are we?
– Think Silicon is a privately held company founded in 2007

• What we do?
– Design and Develop low power GPU IP semiconductor cores 

for mobile/embedded devices

• Market
– Focus is the broader IoT and specifically the “Wearable”

market

• Our mission
– Support and collaborate with our customers to create mutual 

and enduring values in each phase of the project

Ultra Low Power GPUs for Wearables
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Moore’s Law in Mobile GPUs

Applications  in next 5 years will need 4-5x the current GPU perf.

Display resolution exponential increase (4K displays are here) 

BUT… Power roughly under the same power budget (few hundreds milliwatts)

IoT GPUs: few mWatts (< 3 mW) are devoted to graphics
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New smart low power techniques must be found

Smartphone 
GPUs



Evolution in Graphics

4

Then

• If YES  we can reduce power by simply “remembering” the 
results from previous calculations 

Many areas with the 
same or almost the 

same colours 

Redundancy  heard of graphics applications

Now

Pixels with same 
colours same 
calculations with 

same inputs ?
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• Value Memoization or Value Reuse or Work Reuse or 
Value Cache

• Pros: Simple design  a memory array + some logic

Remembering Previous Calculations ???
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• For each new pixel,  first the Value Cache is checked using input colours
• Match (value cache hit) one local memory access, 8 less costly 

computations
• Mismatch (value cache miss) two local memory accesses (VC 

lookup + VC update)  extra power in the system



• Bad news: Value memoization is not able to pay off
• Corbal et al. Fuzzy memoization for floating point multimedia 

applications 
• Citron et al. Look It Up or Do the Math: An Energy, Area, and Timing 

Analysis of Instruction Reuse and Memoization
• Huang et al. Exploiting Basic Block Value Locality with Block Reuse
• Richardson et al. Exploiting Trivial and Redundant Computation 
• Bodik et al. Characterizing coarse-grained reuse of computation
• Sodani et al. Dynamic Instruction Reuse

• Reasons: 
– Very large reuse tables required
– Redundancy or value reuses are limited 
– In CPU-like code, not enough number of blocks of (costly) instructions

• What about graphics? 
– Graphics apps and GPU architectures are promising? 

Memoization Failed in the Past !!!
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Graphics applications ??? YES

– Computer generated images  do have  areas with 
similar colors

– Value caching will be beneficial

Memoization in Graphics ???
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Memoization in Graphics ???
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GPU architecture ??? Definitely YES 

1. GPU code: data flow-like with a
small number of registers per thread

2. GPU code: limited number of input 
registers, always one output register

3. GPU code: not conditional code (in 
most of the cases)

4. GPU code: typically 128 bits

5. GPU code: power hungry 
instructions e.g., log, rsq, or ex2 

6. GPU code: many constant variables 

• No need to “remember” 
constants

A typical GLSL 
fragment shader



• Evaluation of Redundancy & Value Cache in all GPU 
instructions
– Result 1: Value cache performance differs among the 

instructions depending on instruction type (scalar or 
vector and input registers)

– Result 2: Redundancy is limited  only 14% on average in 
a 32 entries Value Cache

First Results 
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Average (0-bits):  

• 12,96% 8-entries

• 14,21%, 32 entries

Average (8-bits):  

• 16,04%, 32 entries

Average (16-bits):  

• 40,62%, 32 entries

Average (20-bits):  

• 75,95%, 32 entries



• Reduced Accuracy: from full VC matches to 
partial matches (partial matches: dynamically 
reduce the bits of mantissa) 

– Result: VC hit ratio increases exponentially 
“accuracy” is the only viable way

First Results using Approximate Matches
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• Evaluation of Value cache with full matches
(Redundancy) in large memoization tables

– Result: Redundancy cannot be captured with 
(unrealistically) large tables in groups of instructions

Value Cache in Instruction Groups

11Jan. 2015 Georgios Keramidas / Think Silicon Ltd.



• Not all instructions must be equally precise
– Result 1: Texture fetches in high precision 

– Result 2: Calculations in low  precision

What about Image Quality ?

More details can be found in the paper

• Precision reduction in all instructions NO more than 4-bits can be 
ignored during partial matches

• Precision reduction ONLY in arithmetic instructions  up to 16 bits 
can be ignored during partial matches

Precision is reduced 
in all instructions

Precision is reduced 
only in arithmetic  

instructions 
(texture fetches in 

FULL precision)
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• Putting all together  Compiler (LLVM)-level Methodology to 
automatically identify VC blocks in OpenGL fragment shaders

Methodology (in a nutshell): 

• Try to find the largest code 
segments (VC blocks) excluding 
texture fetch instructions or 
instructions than contribute to 
texture fetches 

• Reasoning: in this way, the 
precision of the VC block can 
be aggressively reduced 
(increasing VC hits)

Our Methodology
• VC instructions

– AddEntries places new results in the VC in misses
– LookupEntries retrieves from VC, in hits, or produces misses 
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• Dynamic Value Cache  Run-time, feedback-directed mechanism to 
control the interplay between precision reduction and QoS 
maximizing the value reuse benefits at the same time

VC block selection 
methodology  58.7% of 
fragment shaders code 
encapsulated in VC blocks 

• 13.5% reduction in 
executed 
instructions 

• >60% hits in value 
cache

• 0.8% image quality 
loss 

Frame 50 200 300

Quake_4 60 60 60

Doom_3 54 55 54

Prey_Guru_4 54 55 55

UT_2004 64 72 73

Average code coverage: 58.7%

Results

More details can be found in the paper
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• Value Cache in silicon (in 2 company’s products)

– VC as an extra specialized functional unit in 
GPU data path

– VCFU managed by machine instructions 
visible to GPU compiler/assembler

– Extension of GPU ISA 

– VC instructions as LLVM intrinsic instructions

– Insertion methodology implemented in the 
LLVM IR

Practical Issues

Assembly 
Produced
By LLVM

Simulation results == 
FPGA results
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• Contribution: Value Cache mechanism

• Target: Remove redundant, complex arithmetic 
operations in OpenGL graphics applications

• VC strongly relies on the concept of approximate 
computing by reducing the accuracy of the value 
memoization comparisons in a dynamic fashion
– Without using approximate computing techniques 

meager or negative benefits observed

• Overall: 13.5% reduction in executing instructions in 
modern fragment shaders with a negligible loss in the 
quality of the rendered images

Conclusions
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