
Approximate
Computing in

Low Power GPUs

Georgios Keramidas

January 2015

Title: Clumsy Value Cache: An Approximate
Memoization Technique for Mobile
GPU Fragment Shaders

By: Georgios Keramidas, Chrysa Kokkala, and Iakovos Stamoulis

Jan. 2015 1Georgios Keramidas / Think Silicon Ltd.

• Who are we?
– Think Silicon is a privately held company founded in 2007

• What we do?
– Design and Develop low power GPU IP semiconductor cores

for mobile/embedded devices

• Market
– Focus is the broader IoT and specifically the “Wearable”

market

• Our mission
– Support and collaborate with our customers to create mutual

and enduring values in each phase of the project

Ultra Low Power GPUs for Wearables

Jan. 2015 2Georgios Keramidas / Think Silicon Ltd.

Moore’s Law in Mobile GPUs

Applications  in next 5 years will need 4-5x the current GPU perf.

Display resolution exponential increase (4K displays are here)

BUT… Power roughly under the same power budget (few hundreds milliwatts)

IoT GPUs: few mWatts (< 3 mW) are devoted to graphics

10 years
ago

5 years
ago

NOW in 5
years

in 10
years

GPU performance

GPU Power

Display ResolutionLO
G

 S
C

A
LE

Jan. 2015 3Georgios Keramidas / Think Silicon Ltd.

New smart low power techniques must be found

Smartphone
GPUs

Evolution in Graphics

4

Then

• If YES  we can reduce power by simply “remembering” the
results from previous calculations

Many areas with the
same or almost the

same colours

Redundancy  heard of graphics applications

Now

Pixels with same
colours same
calculations with

same inputs ?

4Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Value Memoization or Value Reuse or Work Reuse or
Value Cache

• Pros: Simple design  a memory array + some logic

Remembering Previous Calculations ???

Jan 2015 5Georgios Keramidas / Think Silicon Ltd.

• For each new pixel, first the Value Cache is checked using input colours
• Match (value cache hit) one local memory access, 8 less costly

computations
• Mismatch (value cache miss) two local memory accesses (VC

lookup + VC update)  extra power in the system

• Bad news: Value memoization is not able to pay off
• Corbal et al. Fuzzy memoization for floating point multimedia

applications
• Citron et al. Look It Up or Do the Math: An Energy, Area, and Timing

Analysis of Instruction Reuse and Memoization
• Huang et al. Exploiting Basic Block Value Locality with Block Reuse
• Richardson et al. Exploiting Trivial and Redundant Computation
• Bodik et al. Characterizing coarse-grained reuse of computation
• Sodani et al. Dynamic Instruction Reuse

• Reasons:
– Very large reuse tables required
– Redundancy or value reuses are limited
– In CPU-like code, not enough number of blocks of (costly) instructions

• What about graphics?
– Graphics apps and GPU architectures are promising?

Memoization Failed in the Past !!!

25-Mar-14 6Georgios Keramidas / Think Silicon Ltd.

Graphics applications ??? YES

– Computer generated images  do have areas with
similar colors

– Value caching will be beneficial

Memoization in Graphics ???

Jan 2015 7Georgios Keramidas / Think Silicon Ltd.

Memoization in Graphics ???

Jan 2015 8Georgios Keramidas / Think Silicon Ltd.

GPU architecture ??? Definitely YES

1. GPU code: data flow-like with a
small number of registers per thread

2. GPU code: limited number of input
registers, always one output register

3. GPU code: not conditional code (in
most of the cases)

4. GPU code: typically 128 bits

5. GPU code: power hungry
instructions e.g., log, rsq, or ex2

6. GPU code: many constant variables

• No need to “remember”
constants

A typical GLSL
fragment shader

• Evaluation of Redundancy & Value Cache in all GPU
instructions
– Result 1: Value cache performance differs among the

instructions depending on instruction type (scalar or
vector and input registers)

– Result 2: Redundancy is limited  only 14% on average in
a 32 entries Value Cache

First Results

Jan 2015 9Georgios Keramidas / Think Silicon Ltd.

Average (0-bits):

• 12,96% 8-entries

• 14,21%, 32 entries

Average (8-bits):

• 16,04%, 32 entries

Average (16-bits):

• 40,62%, 32 entries

Average (20-bits):

• 75,95%, 32 entries

• Reduced Accuracy: from full VC matches to
partial matches (partial matches: dynamically
reduce the bits of mantissa)

– Result: VC hit ratio increases exponentially 
“accuracy” is the only viable way

First Results using Approximate Matches

Jan 2015 10Georgios Keramidas / Think Silicon Ltd.

Average (0-bits):

• 12,96% 8-entries

• 14,21%, 32 entries

Average (8-bits):

• 16,04%, 32 entries

Average (16-bits):

• 40,62%, 32 entries

Average (20-bits):

• 75,95%, 32 entries

• Evaluation of Value cache with full matches
(Redundancy) in large memoization tables

– Result: Redundancy cannot be captured with
(unrealistically) large tables in groups of instructions

Value Cache in Instruction Groups

11Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Not all instructions must be equally precise
– Result 1: Texture fetches in high precision

– Result 2: Calculations in low precision

What about Image Quality ?

More details can be found in the paper

• Precision reduction in all instructions NO more than 4-bits can be
ignored during partial matches

• Precision reduction ONLY in arithmetic instructions  up to 16 bits
can be ignored during partial matches

Precision is reduced
in all instructions

Precision is reduced
only in arithmetic

instructions
(texture fetches in

FULL precision)

12Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Putting all together  Compiler (LLVM)-level Methodology to
automatically identify VC blocks in OpenGL fragment shaders

Methodology (in a nutshell):

• Try to find the largest code
segments (VC blocks) excluding
texture fetch instructions or
instructions than contribute to
texture fetches

• Reasoning: in this way, the
precision of the VC block can
be aggressively reduced
(increasing VC hits)

Our Methodology
• VC instructions

– AddEntries places new results in the VC in misses
– LookupEntries retrieves from VC, in hits, or produces misses

13Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Dynamic Value Cache  Run-time, feedback-directed mechanism to
control the interplay between precision reduction and QoS
maximizing the value reuse benefits at the same time

VC block selection
methodology  58.7% of
fragment shaders code
encapsulated in VC blocks

• 13.5% reduction in
executed
instructions

• >60% hits in value
cache

• 0.8% image quality
loss

Frame 50 200 300

Quake_4 60 60 60

Doom_3 54 55 54

Prey_Guru_4 54 55 55

UT_2004 64 72 73

Average code coverage: 58.7%

Results

More details can be found in the paper

14Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Value Cache in silicon (in 2 company’s products)

– VC as an extra specialized functional unit in
GPU data path

– VCFU managed by machine instructions
visible to GPU compiler/assembler

– Extension of GPU ISA

– VC instructions as LLVM intrinsic instructions

– Insertion methodology implemented in the
LLVM IR

Practical Issues

Assembly
Produced
By LLVM

Simulation results ==
FPGA results

15Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

• Contribution: Value Cache mechanism

• Target: Remove redundant, complex arithmetic
operations in OpenGL graphics applications

• VC strongly relies on the concept of approximate
computing by reducing the accuracy of the value
memoization comparisons in a dynamic fashion
– Without using approximate computing techniques

meager or negative benefits observed

• Overall: 13.5% reduction in executing instructions in
modern fragment shaders with a negligible loss in the
quality of the rendered images

Conclusions

16Jan. 2015 Georgios Keramidas / Think Silicon Ltd.

